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We study the use and economic impact of AI technologies. We propose a new measure of firm-level AI 
investments using employee resumes. Our measure reveals a stark increase in AI investments across sectors. 
AI-investing firms experience higher growth in sales, employment, and market valuations. This growth comes 
primarily through increased product innovation. Our results are robust to instrumenting AI investments using 
firms’ exposure to universities’ supply of AI graduates. AI-powered growth concentrates among larger firms and is 
associated with higher industry concentration. Our results highlight that new technologies like AI can contribute 
to growth and superstar firms through product innovation.
1. Introduction

Technological change is a key driver of investment opportunities and 
economic growth (Romer, 1990; Aghion and Howitt, 1992; Kogan et 
al., 2017). The past decade has seen a new technological shift: substan-

tial developments in artificial intelligence (AI) technologies and their 
wide-spread commercial application (Furman and Seamans, 2019). As 
a prediction technology, AI allows firms to learn better and faster from 
vast quantities of data, with the potential to significantly improve busi-

ness decision-making. As such, AI can be a general purpose technology 
that generates growth through increased productivity and product in-

novation across a wide range of sectors (Aghion et al., 2017; Agrawal et 
al., 2019).1 Yet it remains an open question whether AI can transform 
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economies and spur economic growth, as lackluster aggregate produc-

tivity growth over the past decade has led to concerns that the benefits 
of AI may be over-hyped or take a much longer time to materialize (Mi-

het and Philippon, 2019; Brynjolfsson et al., 2019). To date, the lack of 
comprehensive data on firm-level AI adoption has posed the key chal-

lenge to understanding the adoption patterns and the economic impact 
of AI technologies (Seamans and Raj, 2018).

In this paper, we propose a new measure of investments in AI tech-

nologies based on firms’ AI-skilled human capital. The heavy reliance 
of AI on human expertise makes the human-capital-based approach 
particularly well-suited in this setting. We take advantage of a unique 
combination of datasets that capture both the stock of and the demand

for AI-skilled employees among U.S. firms: resume data from Cognism 
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Inc., which offer job histories for 535 million individuals globally, and 
job postings data from Burning Glass, which capture 180 million job 
vacancies. Our new AI measure allows us to analyze the patterns of AI 
adoption and examine its potential benefits for the adopting firms and 
industries. Our main takeaway is that firms that invest more in AI expe-

rience higher growth through increased product innovation, which can 
be seen in increased trademarks, product patents, and updates to firms’ 
product portfolios. Our results suggest that, so far, the first-order ef-

fect of AI has been in empowering growth through product innovation, 
consistent with AI reducing the costs of product development.

Our work offers several innovations over the existing literature. 
First, we introduce a novel measure of firm-level investments in AI tech-

nologies. Our detailed data and measure allow us to study the impact 
of AI technologies on firms, whereas other studies focus on the impact 
of AI on labor (Acemoglu et al., 2022b) and tend to look at the occu-

pation or aggregate level (e.g., Felten et al., 2019). We provide novel 
evidence that AI investments are associated with firm growth and ex-

plore the mechanisms by which this growth can accrue. Second, we are 
able to measure AI adoption for a broad sample of AI-using firms across 
a wide range of industries, which complements recent work that fo-

cuses on AI-inventing firms (Alderucci et al., 2020). Our broad industry 
coverage allows us to examine the implications of AI investments for 
aggregate trends such as industry growth and concentration. Third, in 
the absence of administrative U.S. firm-worker matched data with indi-

vidual workers’ occupations, our Cognism resume data provide unique 
coverage of U.S. jobs with detailed job descriptions while representing 
more than 64% of full-time U.S. employment as of 2018.2 This enables 
us to compare AI labor demand identified from job postings with the 
stock of AI workers identified from resumes. Finally, our rich data on 
firms’ human capital allow us to measure and control for confounding 
factors, such as the use of non-AI information technologies, and capture 
the use of external AI solutions and software (e.g., IPSoft Amelia).

Even with our detailed data, identifying firms’ AI investments is 
challenging due to the multifaceted nature of AI applications.3 We cir-

cumvent this challenge by proposing a new data-driven approach to 
identify AI-related jobs, which does not depend on pre-specified lists 
of keywords. Instead, our algorithm learns the AI-relatedness of each 
job empirically from the detailed skills of the job postings. First, we 
measure the AI-relatedness of each skill in the job postings data, based 
on that skill’s co-occurrence with the core AI skills—machine learning, 
computer vision, and natural language processing. Second, we obtain 
a measure of AI-relatedness of each job posting by averaging the AI-

relatedness of all skills required by the job posting. Finally, we leverage 
the most AI-related skills identified from the job postings data to clas-

sify AI workers in the less structured resume data. For each employee, 
we consider whether skills with the highest AI-relatedness (e.g., “deep 
learning”) appear either in the job title, in the job description, or in any 
publications, patents, or awards received during that job. This gives us 
a classification of each employee of each firm at each point in time. We 
aggregate both the resume data and the job postings data to the firm 
level and match to public firms in the Compustat database. Encour-

agingly, the two measures of AI investments, although based on two 
independent datasets, are highly correlated and yield consistent results.

We confirm that our human-capital-based measures of AI invest-

ments display intuitive properties. First, we confirm that our AI measure 

2 For comparison, while the U.S. Census Bureau’s Longitudinal Employer-

Household Dynamics (LEHD) program provides firm-worker matched data and 
worker wages, it does not include any information on workers’ occupations or 
their jobs (Abowd et al., 2009; Haltiwanger et al., 2014). Moreover, a typ-

ical project using the LEHD data does not have access to all states due to 
administrative reasons: for example, Babina (2020) has access to about 40% 
of employment and Babina and Howell (2023)—60%.

3 Within a single firm, e.g., Caterpillar Inc., AI can have use cases ranging 
from improving machinery via computer vision to offering a new product line 
2

of Internet-of-Things-style analytics to machine operators.
Journal of Financial Economics 151 (2024) 103745

does not pick up general data-related skills, only those that are specifi-

cally associated with AI implementation. Second, we manually inspect 
large samples of AI-classified jobs and confirm that our classification 
picks up highly AI-skilled positions. Third, given that we mainly rely 
on required skills to identify AI-related terms, we validate our mea-

sure by confirming that the job postings with the highest AI-relatedness 
measures skew heavily towards highly AI-specific job titles. Fourth, we 
provide detailed case studies of specific applications of AI within several 
firms. Fifth, we confirm that AI-investing firms also increase research 
and development (R&D) expenditures, consistent with increased exper-

imentation with applying the new AI technologies. Finally, we enrich 
our baseline measure by incorporating the use of external AI solutions 
and software, confirming that this augmented measure yields very sim-

ilar results.

We begin our analysis by describing key patterns in AI investments. 
In both employee resume and job postings datasets, the fraction of AI 
jobs has increased dramatically over time, growing more than seven-

fold from 2010 to 2018. The share of AI jobs is highest in the technology 
sector, but the rate of increase in AI investments over time is simi-

lar across sectors. At the firm level, growth in AI investments is more 
pronounced among ex ante larger firms and firms with higher cash 
holdings. Looking at the local labor market conditions, we observe that 
higher-wage and more educated areas experience faster growth in AI-

skilled hiring.

We next address the fundamental question of whether AI invest-

ments are associated with higher firm growth. As is standard in settings 
with slow-moving processes like technological change (e.g., Acemoglu 
and Restrepo, 2020), our primary specification is a long-differences re-

gression of changes in firm outcomes from 2010 to 2018 on changes 
in firm-level AI-skilled human capital, measured by the share of AI 
workers. This strategy is especially well-suited for our setting, where AI 
investments accumulate gradually over time and generate effects that 
may not be immediate. We include a rich set of controls: industry fixed 
effects and firm-, industry-, and commuting-zone-level characteristics as 
of 2010. We document a strong and consistent pattern of higher growth 
among firms that invest more in AI: a one-standard-deviation increase in 
the resume-based measure of AI investments over the 8-year period cor-

responds to a 19.5% increase in sales, a 18.1% increase in employment, 
and a 22.3% increase in market valuation. The results are ubiquitous 
across major industry sectors (e.g., manufacturing, finance, and retail), 
supporting the idea that AI is a general purpose technology.

While the long-differences specification controls for time-invariant 
firm characteristics, we perform several tests to address concerns about 
omitted variables or reverse causality. First, we exploit firm-level panel 
data to examine firm growth dynamically in each year around AI invest-

ments using a standard distributed lead-lag model (Aghion et al., 2020). 
We find no pre-trends in firm growth prior to AI investments, confirm-

ing that AI-investing firms are not on differential growth trends, and an 
increase after a lag of two to three years, suggesting that the effects of AI 
are not immediate. Second, the results are robust to the inclusion of con-

trols for past firm and industry growth and future growth opportunities 
proxied by Tobin’s q. Third, we confirm that our results reflect specif-

ically investments in AI, rather than other technologies: the effects of 
AI investments remain unchanged when controlling for contemporane-

ous firm-level investments in robotics, non-AI information technologies, 
and non-AI data analytics.

To further address concerns regarding unobserved shocks driving 
both firm growth and AI investments, we use a novel instrumental vari-

ables (IV) strategy: we instrument for firm-level AI investments using 
variation in firms’ ex-ante exposure to the subsequent supply of AI tal-

ent from universities that are historically strong in AI research. The 
core idea is that the scarcity of AI-trained labor is one of the most im-

portant constraints to firms’ AI adoption (e.g., CorrelationOne, 2019), 
and universities that are historically strong in AI research have been 
able to train more AI-skilled graduates in recent years, enabling firms 

that historically hired from those universities to more readily recruit 
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AI talent. To construct the instrument, we compile two new datasets 
on (i) the ex-ante strength of AI research in each university and (ii) 
firm-university hiring networks prior to 2010 to measure firms’ expo-

sure to AI-strong universities. Consistent with commercial interest in 
AI becoming widespread only since 2012, we show that firms’ connec-

tions to AI-strong universities in 2010 were not driven by the need to 
hire AI-skilled workers and do not correlate with firm growth before 
2010. The instrument has a strong first stage, and we show that the in-

strumented firm-level increase in AI investments robustly predicts firm 
growth between 2010 and 2018. We verify that these results are not 
driven by other characteristics of AI-strong universities such as strength 
in general computer science or overall university ranking.

We next explore the mechanisms through which AI can generate 
firm growth. We provide a theoretical framework in which AI can lead 
to firm growth through two non-mutually-exclusive channels: (i) prod-

uct innovation and (ii) process innovation and reduction in operating 
costs. According to the first channel, AI can reduce the costs of product 
innovation, which improves the quality of existing products and allows 
firms to create new products (Klette and Kortum, 2004a; Hottman et 
al., 2016). Theoretically, AI can potentially reduce the costs of product 
innovation in several ways. First, since product development involves 
lengthy experimentation with uncertain benefits (Braguinsky et al., 
2021), the ability of AI algorithms to quickly learn from large datasets 
can reduce the uncertainty of experimentation in product development 
and make the process of learning about promising projects more effi-

cient. For example, at Moderna, AI algorithms have been leveraged in 
the development of the first COVID-19 vaccine in just 65 days, a pro-

cess that would previously take years. Second, AI algorithms themselves 
can constitute improved products (e.g., AI-powered trading platforms). 
Third, AI can contribute to increased product scope by improving firms’ 
ability to learn about customer preferences and tailor product offerings 
to customer tastes (Mihet and Philippon, 2019). Empirically, we find 
that firms with larger AI investments see increased product innovation, 
reflected in more product patents (i.e., patents focusing on product in-

novation, see Ganglmair et al., 2021) and trademarks (Hsu et al., 2021).

The second channel through which AI can stimulate growth is by 
increased process innovation, which would lower operating costs and 
improve productivity for existing products—for example, by replacing 
human labor for some tasks (Agrawal et al., 2019; Acemoglu and Re-

strepo, 2019) or by increasing operational efficiency through more effi-

cient processes and better forecasting of the inputs into the production 
process (Basu et al., 2001; Farboodi and Veldkamp, 2021). Empirically, 
we do not find support for this second channel. AI investments are 
not associated with changes in sales per worker, total factor produc-

tivity, or process patents (i.e., patents focusing on process innovation). 
Several previous technologies have displayed labor effects consistent 
with task-based models of automation (e.g., Acemoglu and Restrepo, 
2018). In the case of AI, detailed case studies of firms’ use of AI re-

veal the breadth of AI applications, and empirically the labor-replacing 
effect does not appear to be the main driver in our analysis. Instead, 
the relationship between AI investments and firm growth appears to be 
driven by product innovation, which allows firms to expand by creating 
more products, thereby expanding firm scale. AI investments can help 
overcome capacity constraints by allowing firms to deploy more capi-

tal to produce additional products, but this comes with corresponding 
increases in costs.

Our final set of results speak to potential aggregate effects of AI 
on industry dynamics. First, we estimate the relationship between firm 
AI investments and firm growth within groups of firms by initial size 
and find that the positive relationship between AI investments and firm 
growth is much stronger among ex-ante larger firms, consistent with 
the theories where AI can increase inequality by favoring large firms 
with more data, which is a crucial input to AI implementation (Mi-

het and Philippon, 2019; Farboodi et al., 2019). We then test whether 
AI-fueled firm-level growth translates into industry-level growth. It is 
3

possible that the positive effects on AI-investing firms are offset or even 
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dominated by negative spillovers to competitors within the industry, 
and Basu et al. (2006) show that the use of technology can be con-

tractionary at the aggregate level if input use declines. Nevertheless, 
we find that industries that invest more in AI experience an overall in-

crease in sales and employment within the sample of Compustat firms. 
Finally, AI investments are associated with increased industry concen-

tration, consistent with our finding that AI favors ex-ante larger firms 
with more data. This suggests that AI investments can affect industry 
dynamics by reinforcing winner-take-most dynamics.

Overall, we document that AI is strongly associated with higher firm 
growth, and this growth comes mainly from firms’ use of AI technolo-

gies for product innovation. This mechanism reflects the nature of AI 
as a prediction technology. Predictions are essential for firms’ decision-

making across all aspects of operations (Farboodi and Veldkamp, 2022) 
and particularly in product development (Cockburn et al., 2018), which 
requires experimentation and learning about promising projects and 
customer preferences (Braguinsky et al., 2021). The ability to perform 
better predictions with AI can create new business opportunities. In this 
context, our paper offers micro-level evidence and helps to unpack the 
black box of where “new projects” and investment opportunities come 
from: new technologies like AI, which allow firms to learn better and 
faster, can expand the investment opportunity frontier by decreasing 
firms’ product development costs.

Related literature

Our paper provides one of the first pieces of systematic evidence 
on how investments in artificial intelligence relate to firm and industry 
outcomes. Recent work makes progress in examining the impact of AI 
technologies on firm activities in various specific settings: robo-advising 
(D’Acunto et al., 2019), fintech innovation (Chen et al., 2019), loan un-

derwriting (Jansen et al., 2020; Fuster et al., 2020), financial analysts 
(Grennan and Michaely, 2019; Abis and Veldkamp, 2023; Cao et al., 
2021), and entrepreneurship (Gofman and Jin, 2022). Acemoglu et al. 
(2022b) use Burning Glass job postings data to study the effect of expo-

sure to AI technologies (based on firms’ occupation structure) on labor 
demand.4 Our comprehensive data on firm employees and data-driven 
approach allow us to measure actual AI investments across a wide range 
of industries and shed light on how AI can stimulate economic growth 
as a general purpose technology (Goldfarb et al., 2023).5 Our empir-

ical evidence supports this view and offers an additional insight: the 
mechanism through which AI fuels growth is by empowering product 
innovation, which has been considered a key driver of growth (e.g., 
Hottman et al., 2016; Argente et al., 2021). Importantly, in the case of 
AI, labor replacement does not appear to be the main mechanism driv-

ing firm-level effects, unlike the task-based model of automation that 
has been applied to previous technologies (e.g., Acemoglu and Restrepo, 
2018). Instead, our results point to the main use of AI being product in-

novation, a less explored mechanism in the literature on technology 
adoption. As a prediction technology (Agrawal et al., 2019), AI creates 
new business opportunities by enabling firms to learn better and faster 
from big data. As such, our results support Cockburn et al. (2018), who 
argue that AI technologies can spur innovation by allowing for faster 
accumulation of knowledge. The product innovation channel also helps 
to explain the results in Rock (2019), who shows that the launch of 
Google’s TensorFlow expedited the gain in market valuations associated 
with firms’ exposure to AI while having null effects on productivity. Fi-

nally, our results are consistent with recent work by Hirvonen et al. 
(2022), who show that manufacturing robot adoption in Finland bene-

fits firm growth mostly through increased product innovation.

4 In follow-up work (Babina et al., 2022), we examine the direct relationship 
between firm AI investments and changes in workforce composition.

5 Our firm-level measures of AI investments based on human capital are com-

plementary to recent work that measures technology adoption using survey data 

(e.g., Brynjolfsson and McElheran, 2016; Acemoglu et al., 2022a).



T. Babina, A. Fedyk, A. He et al.

Methodologically, our paper offers a new approach to measure firms’ 
intangible capital based on human capital, with a specific application 
to capturing investments in AI. Despite ongoing efforts to measure in-

tangibles in the U.S. at the national level (Corrado et al., 2016), most 
firm-level measures of intangible capital use cost items such as R&D and 
SG&A (e.g., Eisfeldt and Papanikolaou, 2013; Peters and Taylor, 2017; 
Crouzet and Eberly, 2019; Eisfeldt et al., 2020). Our methodology offers 
a new measure of intangibles related to technology use that is consistent 
across firms and sectors and can be applied to measure various forms 
of intangible assets, especially those based on human expertise. For ex-

ample, while we focus on AI investments, we are also able to measure 
firm investments in robotics, non-AI information technology, and non-

AI data analytics. More broadly, our method contributes to the growing 
literature that uses textual analysis to measure intangibles such as hu-

man capital and innovation. For example, Hoberg and Phillips (2016)

analyze text of 10-K filings to create measures of firms’ product port-

folios, Kogan et al. (2019) construct occupation-specific indicators of 
technological change using patent text, Fedyk and Hodson (2023) use 
textual analysis to measure firms’ focus on technical skills, Argente et 
al. (2020) map patent text to products, Babina et al. (2023a) use patent 
text to measure technological entrepreneurship, and Bloom et al. (2021)

identify technologies using textual analysis of patents, job postings, and 
earnings calls.

Finally, we contribute to the recent literature on industry concen-

tration and superstar firms (e.g., Gutiérrez and Philippon, 2017; Covar-

rubias et al., 2019; Grullon et al., 2019; Autor et al., 2020). Previous 
literature documents that larger firms adopt more IT and Internet tech-

nologies and benefit more from them (Forman, 2005; Brynjolfsson et 
al., 2008, 2023; Bessen, 2020). Our findings suggest that new technolo-

gies like AI have similar scale advantages and may be an important 
driver of the superstar firms phenomenon. This supports the hypothesis 
that intangible assets propel growth of the largest firms and contribute 
to increased industry concentration (e.g., Crouzet and Eberly, 2019). In 
particular, AI appears to reduce the costs of product development that 
are especially high for large firms (Akcigit and Kerr, 2018), allowing 
these firms to scale more easily. Finally, our evidence is also consistent 
with the lack of productivity growth among superstar firms documented 
in Gutiérrez and Philippon (2019).

2. Artificial intelligence: background and mechanisms

According to the Organisation for Economic Co-operation and De-

velopment (2019), an AI system is defined as a “Machine-based system 
that can, for a given set of human-defined objectives, make predictions, rec-
ommendations or decisions.” We provide a brief overview of the current 
commercial use and key features of AI, followed by a discussion on eco-

nomic mechanisms through which AI investments might lead to higher 
firm growth across a broad range of industries.

2.1. Artificial intelligence: a brief overview

Commercial applications and investments in AI have increased ex-

ponentially over the past decade. While there are no systematic data 
on AI investments by firms, recent estimates hover around $140 billion 
globally per year.6 There has also been an expansion of AI investments 
across industry sectors. While the tech sector was an early adopter of AI, 
surveys of executives indicate widespread adoption of AI technologies 
by firms in all industries (see here for a survey by McKinsey).

Academic research in AI has flourished for decades since John Mc-

Carthy coined the term in 1955 (McCarthy et al., 1955).7 The recent 
explosion of commercial interest in AI in the private sector is driven 
by supply-side factors: rapid accumulation of data, decreasing costs of 

6 See the PitchBook AI & ML Emerging Tech Report 2021 here.
4

7 A brief history of AI research can be found here.
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computation, and advances in methodologies, including deep learning 
(Hodson, 2016). In terms of commercial applications, three key areas 
of AI have captured the bulk of private sector investments: machine 
learning, natural language processing, and computer vision.8 These 
core techniques are united by their ability to perform high-skilled, non-

routine tasks, such as prediction, detection, and classification (Agrawal 
et al., 2019). Their main distinction from traditional methods of data 
analysis consists of these techniques’ ability to learn from vast quanti-

ties of high-dimensional data (including text, speech, and image data; 
Hauptmann et al., 2015) and significantly improve the accuracy of pre-

dictions. For example, the ImageNet challenge in 2012 led to an almost 
halving of image recognition error rates (relative to traditional meth-

ods), which launched large corporate interest in the computer vision 
space.9

AI has several key economic properties. First, AI is a prediction 
technology, and predictions are at the heart of decision-making un-

der uncertainty—faced by firms in all aspects of their operations. As 
a result, the ability to perform better predictions with AI can create 
new business opportunities. Second, economists have argued that AI is 
a general purpose technology (GPT) and can be leveraged across dif-

ferent business segments and sectors to solve a wide range of business 
problems. Examples of GPT include the steam engine, electricity, and 
the Internet. Third, investments in AI center around human expertise, 
with complementary investments in computing technology and data in-

frastructure. This differs from technologies that require mainly capital 
investments, such as industrial robots (Benmelech and Zator, 2022). As 
such, AI is an intangible asset, reflecting the broader shift towards in-

tangible capital (Mihet and Philippon, 2019). The fourth key feature of 
AI technologies is that they are information goods with non-rival uses: 
new algorithms are usually published openly and can be used simulta-

neously by many firms. However, the extent to which AI can benefit 
firms depends on who owns big data—the key input to AI technologies 
(Fedyk, 2016; Jones and Tonetti, 2020).

2.2. Artificial intelligence and firm growth: mechanisms

It is an open question whether and how investments in AI technolo-

gies benefit firms. On the one hand, as a potential general purpose 
technology, AI might spur economic growth. On the other hand, cur-

rent attention to AI may be over-hyped (Mihet and Philippon, 2019), 
or AI may still be too early in the adoption cycle to have a meaningful 
impact on firm growth (Brynjolfsson et al., 2021).

In Online Appendix A1, we present a model with multi-product 
firms, and outline how AI can lead to firm growth either through pro-

cess innovation or product innovation. Below, we discuss intuitions and 
predictions for these two non-mutually-exclusive channels.

AI as a Driver of Product Innovation. AI can lead to firm growth 
by reducing the costs of product innovation. Product innovation and 
the expansion of product varieties is an important mechanism for firm 
growth (Klette and Kortum, 2004a; Hottman et al., 2016). Product 
innovation can increase the product appeal and demand for existing 
products or enable firms to expand their product offerings. Braguin-

sky et al. (2021) point out that product variety and product appeal 
are endogenously determined through experimentation by firms, and 
AI can potentially facilitate the accumulation of knowledge through ex-

perimentation and reduced costs of product innovation (Bustamante et 
al., 2020). According to surveys of executives, enhancement of existing 

8 See here for a survey by Deloitte in 2018. While our focus is on AI tech-

nologies rather than automation technologies like ATMs and industrial robots, 
our measure does incorporate relevant recent robotics technologies (e.g., au-

tonomous vehicles, vision-guided robots) that are highly related to computer 
vision and machine learning technologies.

9 See ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012).

https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020
https://pitchbook.com/news/reports/q1-2021-emerging-tech-research-artificial-intelligence-machine-learning
https://spectrum.ieee.org/history-of-ai
https://www2.deloitte.com/us/en/insights/focus/cognitive-technologies/ai-investment-by-country.html
https://image-net.org/challenges/LSVRC/2012/
https://image-net.org/challenges/LSVRC/2012/
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products and services and the creation of new ones is the top use of AI 
to date (see here for a survey by Deloitte).

As a prediction technology, AI can potentially affect product innova-

tion in several ways. First, the ability of AI algorithms to quickly analyze 
large datasets and learn about the underlying relationships from data 
can potentially reduce the uncertainty of experimentation and make 
the learning process more efficient, which leads to more experimenta-

tion and creation of new products (Cockburn et al., 2018). In practice, 
recent years show a number of ways in which AI has enabled or sped up 
the product innovation process. For example, AI can shorten the drug 
development life cycle. At Moderna, AI algorithms have contributed to 
the development and the production of the first dose of the COVID-19 
vaccine in just 65 days, a process that would previously take years.10

Second, AI algorithms can help innovate on the quality of existing 
products and services by building AI models directly into products. For 
example, in Online Appendix A2, we offer detailed case studies of the 
applications of AI, which include examples such as the AI-driven trad-

ing platform DeepX at JPMorgan (which allows for faster and cheaper 
execution of trades) and “smart” machinery at Caterpillar (which im-

proves machine safety and flexibility).

Third, AI can also improve product appeal by helping firms learn 
about customer preferences more efficiently and therefore better tai-

lor product and service offerings to customers’ tastes and needs. When 
firms launch new products or expand their product variety, they face 
uncertainty regarding what customers want and how customer prefer-

ences might change. Using AI to analyze customer data can potentially 
enable firms to overcome this hurdle, providing “the right product on 
a hyper-individualized basis” (Hodson, 2016) and overcoming frictions 
in firms’ demand accumulation processes (Foster et al., 2016; Argente 
et al., 2021). For example, data on individual behaviors, such as web 
browsing and location history and other digital footprints, can enable 
better approximations of parameters entering individual demand func-

tions than pure demographic information, leading to more heterogene-

ity in products tailored to customers with different tastes (Mihet and 
Philippon, 2019).

AI as a Driver of Process Innovation and Lower Operating

Costs. AI can also lead to firm growth by reducing the costs of process 
innovation. Process innovation improves firms’ productivity in produc-

ing their existing products, and many prior technological innovations 
have aimed at lowering operating costs and improving productivity 
(e.g., Basu et al., 2001; Cardona et al., 2013; Acemoglu et al., 2020).

In theory, AI technologies can stimulate process innovation and pro-

ductivity improvements in at least two ways. First, AI can potentially 
replace human labor for some tasks (Agrawal et al., 2019), cutting 
per-unit labor costs. Specifically, the ability of AI to aid in the decision-

making process and in solving complex cognition problems has led 
to concerns that AI can disrupt high-skill and high-wage occupations, 
in contrast to previous waves of technology adoption (Webb, 2020). 
Second, AI can increase operational and production efficiency through 
better forecasting (Mihet and Philippon, 2019). Tanaka et al. (2020)

present a model of firm input choice under uncertainty and costly ad-

justment, where forecast errors result in under- or over-investment. AI 
can potentially help reduce forecast errors and optimize input decisions 
by firms.

The potential to use AI-based forecasting for streamlining firms’ ex-

isting operations can be seen in our data. The case studies in Online 

10 See here and here, where Dave Johnson, Moderna’s VP of Informatics, Data 
Science, and AI, explains how Moderna was able to develop a COVID vaccine so 
quickly: “We very purposely designed all this infrastructure that we think of as 
an AI factory, in order to rapidly deliver algorithms from concept to production, 
to enable our scientists to leverage the power of AI in their daily jobs. [...] That 
allows our scientists to design novel mRNA constructs, use AI algorithms to 
optimize them, and then order them from our high throughput preclinical scale 
5
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Appendix A2 highlight how AI-enabled forecasting improves firm oper-

ations across a variety of industries: for example, AI workers at JPMor-

gan Chase model default of non-performing loans; Caterpillar leverages 
AI for inventory management; and UnitedHealth uses AI to support ef-

ficient medical billing.

These two mechanisms have different empirical predictions. Product 
innovation predicts creation of new products, improvements in product 
quality, and expansion of product portfolios, whereas process innova-

tion does not affect firms’ product portfolios. In terms of productivity, 
process innovation leads to lower operating costs and higher productiv-

ity, but the effect of product innovation on productivity is ambiguous. 
Studies on previous general purpose technologies mostly find positive 
effects on productivity (e.g., Fizsbein et al., 2020; Acemoglu et al., 
2020), and some also show a positive effect on product innovation (e.g., 
Bartel et al., 2007). We will empirically examine the channels through 
which AI affects firm growth in Section 6.

3. Data

We propose a new measure of firms’ investments in AI based on 
their intensity of AI-skilled hiring. AI-skilled labor is a key input to 
AI implementation. Other inputs to AI, such as data and computing 
infrastructure, are complementary to AI-skilled human capital, so our 
human-capital-based measure allows us to capture the relative intensity 
of AI investments across firms.

A central challenge in the literature on the economic impact of AI 
is the dearth of firm-level data on AI investments. We overcome this 
challenge by leveraging rich datasets on firms’ employee profiles and 
job postings simultaneously measuring firms’ stock of AI workers and 
demand for AI workers. We detail each dataset and describe our sample 
construction process.

3.1. Employment profiles from Cognism

We use employee resumes to measure the actual stock of AI workers 
at each firm. We leverage a novel dataset of approximately 535 million 
individual profiles provided by Cognism, an aggregator of employment 
profiles for lead generation and client relationship management ser-

vices. Cognism obtains the resumes from a variety of sources, including 
publicly available online profiles, collaborations with recruiting agen-

cies, third party resume aggregators, human resources databases of part-

ner organizations, and direct user-contributed data.11 These data are 
introduced and described in detail in Fedyk and Hodson (2023). While 
the data slightly over-represent high-skilled employees, they cover ap-

proximately 64% of the entire U.S. workforce as of 2018 and offer 
a representative breakdown across industries. For each employment 
record listed by the individual, we see the start and end dates, the job ti-
tle, the company name, and the job description. Individuals may also list 
their patents, awards, and publications. Cognism’s AI Research depart-

ment leverages techniques from machine learning and natural language 
processing, including named entity disambiguation and graph-based 
modeling methods, to further enrich the resume data by normalizing 
job titles and occupations, associating employees with functional divi-

sions and teams within each firm, and identifying institutions, degrees, 
and majors from education records.12

We match employer names in the Cognism data to the company 
names in the Compustat data. Fedyk and Hodson (2023) provide further 
details on the procedure as applied to the resume data. The matching 

11 The processing of all profiles is compliant with the applicable GDPR and 
CCPA regulations.
12 The data snapshot is from July of 2021. Following Tambe et al. (2020), 
we only use the years through 2018, because the lag in workers updating their 

resumes could otherwise add noise to our measures.

https://www2.deloitte.com/content/dam/insights/us/articles/4780_State-of-AI-in-the-enterprise/DI_State-of-AI-in-the-enterprise-2nd-ed.pdf
https://www.zdnet.com/article/moderna-leveraging-its-ai-factory-to-revolutionise-the-way-diseases-are-treated/
https://sloanreview.mit.edu/audio/ai-and-the-covid-19-vaccine-modernas-dave-johnson/
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of individual resumes to firm entities is performed dynamically to ac-

count for acquisitions and divestitures. Of the 657 million US-based 
person-firm-year employment records between 2007 and 2018, 120 
million (18%) are matched to U.S. public firms (rather than private 
firms or non-commercial sectors). This is consistent with approximately 
26% of overall U.S. employment being accounted for by publicly listed 
firms (Davis et al., 2006). The sample of 120 million person-firm-years 
matched to U.S. public firms is comprised of 19 million distinct individ-

ual employees.

3.2. Job postings from Burning Glass

The second dataset we use covers over 180 million job postings in 
the United States in 2007 and 2010–2018. The dataset is provided by 
Burning Glass Technologies (BG in short) and draws from a rich set of 
sources. BG examines more than 40,000 online job boards and company 
websites, aggregates the job postings data, parses them into a system-

atic, machine-readable form, and creates labor market analytic prod-

ucts. The company employs a sophisticated deduplication algorithm to 
avoid double counting vacancies that post on multiple job boards. BG 
data contain detailed information for each job posting, including job 
title, job location, occupation, and employer name. Importantly, the 
job postings are tagged with thousands of specific skills standardized 
from the open text in each job opening. The main advantages of the BG 
dataset are the breadth of its coverage and the rich detail of the individ-

ual job postings. The dataset captures the near-universe of jobs posted 
online and covers approximately 60–70% of all vacancies posted in the 
U.S., either online or offline. Hershbein and Kahn (2018) provide a de-

tailed description of the BG data and show that their representativeness 
is stable over time at the occupation level. Burning Glass job postings 
complement our main Cognism resume dataset in two ways. First, we 
take advantage of the detailed taxonomy of skills in the job postings 
data to empirically identify highly AI-relevant skills, as we detail in 
Section 4.1. Second, Burning Glass job postings data are widely acces-

sible to the academic community; by validating them against Cognism 
resume data, we show that, in absence of matched employer-employee 
data, job postings can serve as a valid proxy for firms’ technological 
investments.

We focus on jobs with non-missing employer names and at least one 
required skill. About 65% of job postings have employer information 
and 93% of job postings require at least one skill.13 We also drop job 
postings that are internships. We then match the employer firms in the 
remaining job postings to Compustat firms. This step is necessary to 
aggregate job postings to the firm level and merge with other firm-level 
variables. We perform a fuzzy matching between firm names in BG and 
Compustat after stripping out common endings such as “Inc” and “L.P.” 
For observations that do not match exactly on firm name, we manually 
assess the top ten potential fuzzy matches by looking at the firm name, 
industry, and location. Out of 112 million job postings with non-missing 
employer names and skills, 42 million (38%) are matched to Compustat 
firms. This slightly over-represents employees of publicly listed firms, 
which constitute just over one fourth of U.S. employment in the non-

farm business sector (Davis et al., 2006).

3.3. Additional data sources

We merge the Cognism resume data and the Burning Glass job post-

ings data with several additional data sources. We collect commuting-

zone-level wage and education data from the Census American Com-

munity Surveys (ACS), industry-level wages and employment data from 
the Census Quarterly Workforce Indicators (QWI), and academic pub-

lications from the Open Academic Graph (described in detail in Ap-

13 Job postings with missing employer names are primarily those listed on 
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recruiting websites that mask the employers’ identities.
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pendix A). Firm-level operational variables (e.g., sales, employment, 
market value) come from Compustat.

4. Methodology and descriptive evidence

We use the Cognism resume data to construct a human-capital-based 
measure of firm-level AI investments. To do this, we first leverage job 
postings data to learn the most AI-related skills directly from the data; 
we then focus on the most empirically-AI-related skills and identify 
them in the resume data. Finally, we aggregate the worker-level data 
to the firm level by calculating the share of each firm’s employees who 
are AI-skilled.

4.1. AI investments from job postings (Burning Glass)

We take advantage of the detailed information on required skills 
in the job postings data to propose a new data-driven methodology 
for identifying AI-related skills. Other work relies on pre-specified lists 
of key terms,14 which is likely to suffer from both Type I (incorrectly 
labeling tangentially-related employees as AI-related) and Type II (miss-

ing real AI skills that did not make the initial dictionary) errors due 
to the arbitrariness of the list of keywords. This is especially relevant 
in a quickly-evolving domain such as AI, where new emerging skills 
can easily be missed. Our methodology circumvents these challenges 
by learning the AI-relatedness of each of approximately 15,000 unique 
skills directly from the job postings data, based on their empirical 
co-occurrence (within required lists of skills across job postings) with 
unambiguous core AI skills. We then aggregate the skill-level measure 
to the job level by generating a continuous measure of AI-relatedness 
for each job posting, from which we can classify jobs into AI-skilled and 
non-AI-skilled.

To measure the AI-relatedness of each skill, we calculate the skill’s 
co-occurrence with Artificial Intelligence (AI) and its three main sub-

fields: machine learning (ML), natural language processing (NLP), and 
computer vision (CV).

𝑤𝐴𝐼
𝑠

= # of jobs requiring skill 𝑠 and (ML, NLP, CV or AI in required skills or in job title)

# of jobs requiring skill 𝑠

Intuitively, this measure captures how correlated each skill 𝑠 is with the 
core AI skills. For example, the skill “Tensorflow” has a value of 0.9, 
which means that 90% of job postings with Tensorflow as a required 
skill also require one of the core AI skills or contain one of the core 
AI skills in the job title. Hence, a “Tensorflow” requirement in a job 
posting is highly indicative of that job being AI-related. On the other 
hand, the AI-relatedness measure of the skill “Microsoft Office” is only 
0.003. We list the skills with the highest AI-relatedness measures in 
Online Appendix Table A1.

We define the job-posting-level AI-relatedness measure 𝜔𝐴𝐼
𝑗

for a 
given job posting 𝑗 as the mean skill-level measure 𝑤𝐴𝐼

𝑠
across all skills 

required by job posting 𝑗. We transform the continuous AI measure into 
a binary indicator by defining each job posting 𝑗 as AI-related if the 
measure 𝜔𝐴𝐼

𝑗
is above 0.1, a threshold that captures the full range of AI-

related technical jobs while minimizing false positives based on manual 
inspection of the data. The firm-level measure 𝑆ℎ𝑎𝑟𝑒𝐴𝐼

𝑓,𝑡
is then defined 

as the fraction of job postings by firm f in year t that are AI-related (i.e. 
𝜔𝐴𝐼
𝑗
> 0.1).15 We use a discrete classification for ease of interpretability 

14 For example, Hershbein and Kahn (2018) classify jobs as requiring cog-

nitive abilities if any listed skills include at least one of the following terms: 
“research,” “analy-,” “decision,” “solving,” “math,” “statistic,” or “thinking.” 
Similar bag-of-words approaches with pre-specified search terms are used to 
identify AI-related employees (e.g., Alekseeva et al., 2021; Acemoglu et al., 
2022b).
15 Throughout our empirical analyses, we focus on jobs that are matched to 
Compustat firms. Online Appendix Figure A5 plots the share of all job postings 

and the share of AI-related job postings that are matched to Compustat in each 
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and consistency with the resume-based measure in Section 4.2, but we 
show in Section 5.1 that the results are robust to: (i) applying alterna-

tive cut-offs (e.g., 0.05 and 0.15) and (ii) using the continuous measure 
𝜔𝐴𝐼
𝑗

aggregated to the firm level. This job-postings-based measure of AI 
investments provides a secondary measure to our main measure based 
on the stock of employees, obtained from the resume data as described 
in the next subsection.

Online Appendix Table A2 provides examples of AI-related and non-

AI-related job postings. For each job, the continuous AI measure is the 
average AI-relatedness of all required skills. Our measure enables us to 
capture a wide range of AI-related jobs, from data scientists to speech 
recognition scientists to autonomous vehicle engineers. While many AI-

related jobs are data scientists and similar data-analysis-related jobs, 
our measure differentiates data-analysis jobs specifically related to AI 
(job postings numbered 6–10) from data-analysis jobs that are not spe-

cific to AI and that focus on more traditional statistical methods (job 
postings numbered 11–15). In addition, we further ensure that our 
measure is not picking up general programming or statistics skills not 
specific to AI by showing (in Section 5.1) the robustness of our results 
to manually refining our measure. In particular, we screen out skills 
that represent general programming languages (e.g., Python) or statis-

tics (e.g., linear regression) and only keep skills that relate specifically 
to AI, including AI methodology or algorithms (e.g., supervised learn-

ing) and AI software (e.g., Tensorflow). This process, curated by the 
AI-trained personnel at the AI for Good Foundation, categorizes the 700 
skills that have an AI-relatedness measure above 0.05 and are required 
in at least 50 job postings into “narrow” and “broad” AI skills. This re-

finement mainly leaves out skills with relatively lower AI-relatedness 
measures and empirically has little effect on the results.16

4.2. AI investments from resumes (cognism)

For our main measure of firms’ AI investments, we identify the em-

ployees in the Cognism resume data whose job positions directly involve 
AI. We begin with the set of 67 keywords in Online Appendix Table 
A1, which are skills with the highest skill-level AI-relatedness measures 
based on job postings data. We search for these terms in each employ-

ment record of each individual in the resume data to see whether: (i) 
that job (role and description) directly includes any of the identified AI 
terms; (ii) the individual obtained any patents during that year or the 
two following years (to account for the time lag between the work and 
the patent grant) with these AI terms; and (iii) the individual has any 
publications or awards during that year or the following year that in-

clude the identified AI terms. If any of these conditions are met, then 
that person at that firm in that year is classified as an AI-related em-

ployee. For example, jobs with titles such as “senior machine learning

developer” or job descriptions such as “develop chatbots using Python 
with Tensorflow and deep learning models” are identified as AI jobs.

After classifying each individual at each point in time, we use the 
number of AI-related employees and the number of total employees 
at each firm in each year to compute the percentage of employees of 
that firm in that year who are classified as AI-related. Given that our 
empirical analyses focus on U.S.-listed firms, our firm-level measure 
focuses on the employees who are based in the U.S.

4.3. Summary statistics and validation

We examine both of our constructed measures of AI investments, 
confirm that they display intuitive properties, and discuss how our 

year. Although publicly listed firms constitute 38% of all job postings, they 
account for approximately half of all AI-related job postings. This suggests that, 
on average, publicly-listed firms hire more AI workers than private firms.
16 For example, among the 50 skills with the highest AI-relatedness measures, 
49 are classified as narrow AI skills (the single exception is “statsmodels,” a 
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Python package for general statistical analysis).
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Fig. 1. Time Series of AI Investments. This figure shows the time series of the 
two measures of AI investments for U.S. public firms. Panel (a) shows the frac-

tion of all employees in a given year who are classified as holding AI-related 
positions in the Cognism resume data from 2007 to 2018. Panel (b) reports the 
fraction of job postings in the Burning Glass data (with job-level continuous AI 
measure above 0.1) for 2007 and 2010–2018.

resume data help address potential limitations of measuring AI invest-

ments through job postings. Validating our novel measure is challeng-

ing, given the lack of existing firm-level measures of AI investments. 
However, we show that our measure displays a number of intuitive 
properties, captures specifically AI investments, and does not suffer 
from biases such as firms investing in AI by acquiring AI startups.

First, we document that both measures—based on resumes and job 
postings—display a natural rise over time, increasing more than seven-

fold from 2010 to 2018. Panel (a) of Fig. 1 shows a rapid increase in 
the fraction of employees whom we classify as AI-related: this fraction 
starts at 0.04% in 2007 and reaches 0.29% in 2018. Panel (b) shows 
analogous patterns in the job postings data: the fraction of AI-skilled 
job postings starts out at 0.1% in 2010, rises rapidly over time (with 
the increase speeding up from 2014 to 2018), and peaks at 0.8% in 
2018. There is substantial heterogeneity in the growth in AI-skilled 
labor across individual firms, which provides the variation needed to 
examine the relationship between AI investments and firm outcomes. 
For the entire sample of public firms, while a median firm sees an in-
crease of 0% (0%) in the resume-based (job-postings-based) measure, 
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this increase is 0.35% (1.33%) at the 90th percentile, 0.62% (2.99%) at 
the 95th percentile, and 2.22% (8.11%) at the 99th percentile.

It is helpful to put the incidence of AI-skilled workers among U.S. 
employees into perspective. While, as expected, AI workers constitute 
a relatively small fraction of total employment, skyrocketing demand 
for AI skills and correspondingly high salaries that they command—on 
the order of millions of dollars for prominent AI-researchers (Gofman 
and Jin, 2022)—suggest that AI-skilled workers are similar to other 
specialized, high-skilled, high-wage jobs. For example, in terms of the 
technological and innovative nature of their work, AI-skilled workers 
could be compared to inventors. Inventors also tend to be highly paid 
and represent around 0.13–0.24% of the U.S. workforce, which is sim-

ilar in prevalence to AI workers.17 Overall, while AI workers form a 
small fraction of the overall workforce, it is helpful to contextualize 
their impact against that of executives (Bertrand and Schoar, 2003) and 
patent inventors (Kline et al., 2019), both of whom are similarly small, 
high-skilled groups of employees that can nonetheless disproportion-

ately affect firm outcomes.

Second, we document that the increase in AI jobs displays an intu-

itive distribution across industries. Panel (a) of Fig. 2 plots the average 
share of AI-related workers in the resume data for public firms in each 
of the 2-digit NAICS sectors, separately for the years 2007–2014 and 
2015–2018. Panel (b) repeats the same analysis for the share of AI-

related job postings. The figure highlights that the share of AI-skilled 
jobs (job postings) is highest in the “Information” sector, growing from 
0.15% (0.57%) in the early years of 2007–2014 to 0.50% (1.68%) in the 
later period of 2015–2018. However, almost all sectors see a meaningful 
increase, supporting the notion that AI is a general purpose technology 
(Goldfarb et al., 2023). The ability of our measures to pick up AI in-

vestments in a broad cross-section of economic sectors highlights a key 
advantage of our human-capital-based approach.

Third, AI investments correlate positively with increased R&D ex-

penditures. For example, changes in the resume-based share of AI work-

ers from 2010 to 2018 display a correlation of 0.27 with changes in log 
R&D expenditures over the same time period, controlling for industry 
fixed effects. The pattern of AI-investing firms increasing research and 
development (R&D) expenditures supports the notion that AI invest-

ments involve a great deal of experimentation with applying the new 
technology (Braguinsky et al., 2021).

Fourth, digging deeper into the skills and jobs with the highest 
AI-relatedness measures according to our methodology, we observe 
that our measure is indeed capturing the essence of AI-skilled hir-

ing by firms. The required skills in job postings with the highest 
AI-relatedness measures, presented in Online Appendix Table A1, are 
highly AI-specific skills, such as “Tensorflow” and “Random Forests,” 
while general data-analysis-related skills have low AI-relatedness mea-

sures: for example, the measure is equal to 0.04 for “Data Modeling” 
and 0.03 for “Quantitative Analysis.” Similarly, Online Appendix Ta-

ble A3 shows that the job titles associated with the highest job-level 
measures of AI-relatedness are all very relevant postings such as “Arti-

ficial Intelligence Engineer” (average AI-relatedness measure of 0.497), 
“Senior Data Scientist - Machine Learning Engineer” (0.394), and “AI 
Consultant” (0.369). Since we do not use information contained in job 
titles of job postings to identify AI-related skills and jobs, these pat-

terns provide additional validation that our measure captures relevant 
AI positions.

As a further validation, it is worth noting the geographic locations of 
the identified AI jobs. We aggregate firm-level AI hiring of Compustat 
firms to the commuting zone level and link the commuting-zone-level 
changes in the share of AI workers from 2010 to 2018 to 2010 commut-

ing zone characteristics from the Census American Community Survey. 

17 These estimates come from the USPTO patent data (Babina et al., 2023a), 
where 0.13% is the share of U.S. workers who file patents in a given year, and 
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0.24% is the share of U.S. workers who file patents over a three-year period.
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Fig. 2. AI Investments by Industry Sector. This figure presents the average share 
of AI jobs at the industry level, based on the sample of U.S. public firms. For 
each sector (based on 2-digit NAICS industry codes), we compute the fraction 
of AI-related employees in the Cognism resume data (in Panel (a)) and the 
average share of AI-related job postings in the Burning Glass data (with job-

level continuous AI measure above 0.1) across all job postings (in Panel (b)). 
The statistics are computed for firms in each industry sector across two sub-

periods: 2007–2014 and 2015–2018. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Online Appendix Figure A6 shows that there is significant variation in 
AI investments across commuting zones. Online Appendix Figure A7 
shows a strong positive relationship between the change in the share 
of AI workers from 2010 to 2018 and the average wage or the frac-

tion of college-educated workers at the commuting zone level in 2010. 
These patterns are intuitive, given that AI employees tend to be high-

skilled technologically-oriented workers, and contrast with investments 
in robotics, which concentrate in areas with larger shares of manufac-

turing employment (Acemoglu et al., 2020).

Finally, in Table 1, we observe a high correlation between our mea-

sure of AI investments based on the novel resume data and on the job 
postings data. The resume data provide several advantages over the job 
postings data for measuring firms’ AI investments. First, the resume data 
measure actual hiring of AI-skilled labor. For example, if a firm is unable 

to fill AI-related vacancies, the job postings measure will overstate that 
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Table 1

Correlations between Job-posting-based and Resume-based AI Measures. This table reports, for each year from 2010 to 2018, 
the Spearman rank correlations between three pairs of firm-level variables: (i) the absolute number of AI job postings in 
Burning Glass against the absolute number of AI employees in resumes from Cognism; (ii) the fraction of employees classified 
as AI-related in the two datasets; and (iii) the fraction of AI employees in Cognism against the average continuous AI measure 
in Burning Glass. Panel 1 shows raw correlations, and Panel 2 displays correlations conditional on the 2-digit NAICS industry 
sector fixed effects and the baseline controls all measured as of 2010: firm-level characteristics (log sales, cash/assets, firm 
age, and log number of resumes and job postings), log industry wage, and characteristics of the commuting zones where the 
firms are located (the share of workers in IT-related occupations, the share of college-educated workers, log average wage, 
the share of foreign-born workers, the share of routine workers, the share of workers in finance and manufacturing industries, 
and the share of female workers). All correlations are computed over the cross-section of firms with at least 20 U.S. jobs in 
the Cognism resume data in each year of the sample.

Panel 1: Raw Correlations

Correlations between:

Year Numbers of AI jobs Fractions of AI Jobs Cognism fraction & BG continuous measure

2010 0.320 0.272 0.374

2011 0.341 0.288 0.390

2012 0.338 0.291 0.388

2013 0.424 0.363 0.447

2014 0.468 0.410 0.484

2015 0.474 0.405 0.496

2016 0.503 0.421 0.499

2017 0.564 0.474 0.531

2018 0.574 0.484 0.538

Panel 2: Correlations Conditional on Baseline Controls

Correlations between:

Year Numbers of AI jobs Fractions of AI Jobs Cognism fraction & BG continuous measure

2010 0.825 0.650 0.470

2011 0.822 0.622 0.476

2012 0.801 0.583 0.487

2013 0.784 0.569 0.498

2014 0.757 0.526 0.551

2015 0.729 0.467 0.513

2016 0.702 0.475 0.501

2017 0.687 0.507 0.510

2018 0.670 0.502 0.513
firm’s investments in AI. Second, human capital on-boarded through 
acquisitions is captured by the resume data, where employees of acqui-

sition targets are counted as employees of the acquirer subsequent to 
the acquisition.18 For these reasons, we focus on the resume-based mea-

sure of AI investments in our baseline specifications. Nevertheless, we 
find high correlations between the two measures and consistent results 
throughout the remainder of the paper, which alleviates some of the 
concerns about job postings data in measuring firms’ AI talent. This con-

sistency suggests that, in the absence of matched employer-employee 
data, our methodology offers a good proxy for firms’ actual AI hiring 
using the more widely accessible job postings data.

4.4. Firm-level determinants of AI investments

We consider the firm-level determinants of AI investments and docu-

ment that larger firms and firms with higher cash reserves tend to invest 
in AI more aggressively.

Our focus is on understanding the use of AI technologies by a wide 
range of firms, rather than the invention of new AI tools. For that 
reason, we exclude firms in the tech sector from our main empirical 
analyses in this and the following sections.19 Our main regression sam-

ple is comprised as follows. In 2010, there are 3,735 U.S.-listed public 
firms that have non-missing industry codes, positive sales and employ-

18 Industry reports estimate that 90% of firms’ investments in AI are internal, 
with only 10% coming from acquisitions (Bughin et al., 2017).
19 We exclude firms in two 2-digit NAICS sectors: 51 (“Information”) and 54 
(“Professional, Scientific, and Technical Services”). In later analyses, we con-

firm that the main effects of AI spurring firm-level growth are also present in 
these industries. A complementary analysis of the impact of AI on specifically 
9

AI-inventing firms is provided by Alderucci et al. (2020).
ment, and are not in the tech sector. Among these firms, 2,668 are 
matched to Cognism,20 and we further restrict to firms with at least 20 
U.S. jobs in both 2010 and 2018 to ensure good coverage of the firm’s 
workforce, which leaves us with 1,993 firms.

In Table 2, we examine which ex ante firm characteristics predict 
future growth in firm-level AI investments. For each measure of AI in-

vestments, we estimate the following specification:

Δ𝑆ℎ𝑎𝑟𝑒𝐴𝐼𝑊 𝑜𝑟𝑘𝑒𝑟𝑠𝑖,[2010,2018] = 𝛽𝐹 𝑖𝑟𝑚𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖,2010 +𝑆𝑒𝑐𝑡𝑜𝑟𝐹𝐸 + 𝜖𝑖, (1)

where Δ𝑆ℎ𝑎𝑟𝑒𝐴𝐼𝑊 𝑜𝑟𝑘𝑒𝑟𝑠𝑖,[2010,2018] denotes the change in the share of 
firm i’s AI-related employees from 2010 to 2018. All regressions include 
2-digit NAICS industry fixed effects (𝑆𝑒𝑐𝑡𝑜𝑟𝐹𝐸). Here and throughout 
all subsequent analyses, the Δ𝑆ℎ𝑎𝑟𝑒𝐴𝐼𝑊 𝑜𝑟𝑘𝑒𝑟𝑠𝑖,[2010,2018] variables are 
standardized to have a mean of zero and a standard deviation of one 
to aid in economic interpretation. 𝐹 𝑖𝑟𝑚𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖,2010 represents one of 
the ex ante firm characteristics of interest measured as of 2010: log 
firm sales in column 1, the ratio of cash to total assets (Cash/Assets) in 
column 2, the ratio of R&D expenditures to sales (R&D/Sales) in column 
3, revenue total factor productivity (TFP)21 in column 4, log markup 
measured as the log of the ratio of sales to cost of goods sold following 
De Loecker et al. (2020) in column 5, Tobin’s Q defined as market value 

20 Firms that are not matched to Cognism tend to be either ADRs that do not 
have U.S. employees or smaller firms with few employees.
21 We use standard methodology to calculate revenue TFP as the residual from 
regressing log real sales on log employment and log capital, controlling for firm 
fixed effects and year fixed effects: log 𝑦𝑖𝑡 = 𝜇𝑖 +𝜇𝑡 + 𝛼𝑙𝑠 log(𝑙𝑖𝑡) + 𝛼𝑘𝑠 log(𝑘𝑖𝑡−1) + 𝜀𝑖𝑡 . 
The regression is estimated using OLS separately for each industry. The capital 
stock is constructed using the perpetual inventory method. The TFP measure is 
specific to Cobb-Douglas production functions, while sales per worker measure 

labor productivity for more general production functions.
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Table 2

Firm-level Determinants of Resume-based AI Investments. This table reports the coefficients from regressions of cross-sectional changes in AI investments by U.S. 
public firms (in non-tech sectors) from 2010 to 2018 on the following ex-ante firm characteristics measured in 2010: log sales in column 1, cash/assets in column 
2, R&D/sales in column 3, revenue TFP in column 4, log markup measured following De Loecker et al. (2020) in column 5, Tobin’s Q in column 6, market leverage 
in column 7, return on assets (ROA) in column 8, and firm age in column 9. The dependent variable is the growth in the share of AI workers from 2010 to 2018 
using the resume data from Cognism. Regressions are weighted by the number of Cognism resumes in 2010. All specifications control for the 2-digit NAICS industry 
sector fixed effects. The dependent variable is normalized to have a mean of zero and a standard deviation of one. Standard errors are clustered at the 5-digit NAICS 
industry level and reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Δ Share of AI Workers, 2010–2018

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2010 0.109*** 0.175***

(0.038) (0.033)

Cash/Assets 2010 3.986*** 3.233***

(1.242) (0.832)

R&D/Sales 2010 3.734 1.062

(2.313) (1.745)

Revenue TFP 2010 1.386 0.567

(1.038) (0.532)

Log Markup 2010 0.418 0.147

(0.312) (0.177)

Tobin’s Q 2010 0.335** 0.158

(0.153) (0.118)

Market Leverage 2010 -0.973 0.213

(0.690) (0.301)

ROA 2010 1.409** 0.164

(0.656) (1.127)

Firm Age 2010 -0.003 -0.004**

(0.004) (0.002)

Industry FE Y Y Y Y Y Y Y Y Y Y

Adj R-Squared 0.151 0.309 0.172 0.148 0.142 0.215 0.129 0.129 0.118 0.418

Observations 1,731 1,731 1,731 1,731 1,731 1,731 1,731 1,731 1,731 1,731
of assets divided by book value of assets in column 6, market leverage 
measured as total debt divided by market value in column 7, return on 
assets (ROA) measured as the ratio of net income plus interest expense 
to assets in column 8, and firm age in column 9. Column 10 includes all 
variables in a multivariate specification. We winsorize all continuous 
variables at 1% and 99% to limit the influence of outliers, although we 
confirm in untabulated analyses that, empirically, our results are little 
changed by the winsorization. To account for differences in precision in 
the measurement of AI investments across firms with different numbers 
of available observations, the estimating equation is weighted by each 
firm’s number of resumes in 2010.22

The results reported in Table 2 highlight that ex ante larger firms 
experience higher growth in AI investments. A one-standard-deviation 
increase in log sales in 2010 (which equals 2.1) corresponds to the share 
of AI workers increasing by 23% of the standard deviation from 2010 
to 2018, significant at the 1% level. In addition, firms with higher start-

ing Cash/Assets also see greater investments in AI, in both univariate 
and multivariate regressions. Younger firms also see greater investments 
in AI, but the relationship is not robust as we only observe this in the 
multivariate regression. By contrast, R&D/Sales, revenue TFP, markups, 
firm valuation (Tobin’s Q), market leverage, and return on assets do 
not robustly predict future AI investments. In all further regressions, 
we control for the ex-ante firm characteristics that predict firm AI 
adoption—size, cash/assets, and firm age. Online Appendix Table A4 
shows that the patterns for firm-level demand for AI talent measured 
with Burning Glass job postings data are consistent with the results us-

ing Cognism resume data, reinforcing the high correlations documented 
in Table 1.

22 Since the numbers of worker resumes are correlated with firm size, this 
weighting scheme also roughly weights firms in accordance to their contribu-
10

tion to the economy.
5. AI investments and firm growth

We next document that firms investing in AI technologies grow 
faster in sales, employment, and market value. We consider and rule 
out alternative explanations for this result, including reverse causal-

ity (e.g., firms on faster growth trajectories invest more in AI) and 
omitted variables (e.g., concurrent investments in other technologies 
or demand shocks drive both firm growth and AI investments). Finally, 
we introduce a novel instrumental variable strategy to address remain-

ing concerns.

5.1. Long-differences results

We begin the analysis by examining whether firms that invest in AI 
see faster growth from 2010 to 2018. As is standard in settings with 
slow-moving processes, such as technological progress (e.g., Acemoglu 
and Restrepo, 2020), our primary specification is a long-differences re-

gression of changes in firm outcomes from 2010 to 2018 on changes 
in AI investments proxied by the share of AI workers. This strategy is 
especially well-suited for our setting because AI investments are grad-

ual over time (with 70% of firms onboarding AI workers over a span 
of multiple years), with effects that may not be immediate. By tak-

ing first differences in independent and dependent variables, the long-

differences specification ensures that time-invariant firm characteristics 
do not drive the results.23 In Table 3, we report the estimates from the 
following regression:

23 A potential concern with the long-differences specification is that it requires 
AI-investing firms to be present at the beginning (2010) and the end of the 
sample (2018), which might introduce a sample selection bias. In Section 5.2, 
we use the full panel dataset, which does not condition on firms being present 
over the entire sample period, and find similar effects. Moreover, the industry-

level analysis in Section 7 shows that the inclusion of entering and exiting firms 
has little effect on our results, which would not be the case if the composition 

of firms changed in an important way for our analysis.
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Table 3

AI Investments and Firm Growth: Long-differences Estimates Using the Resume-based AI Measure. This table reports the 
coefficients from long-differences regressions of firm growth from 2010 to 2018 on the contemporaneous firm-level changes 
in AI investments among U.S. public firms (in non-tech sectors). We consider three measures of firm growth: changes in log 
sales (columns 1 and 2), changes in log employment (columns 3 and 4), and changes in log market value (columns 5 and 
6). The main independent variable is growth in the share of AI workers (based on the resume data) from 2010 to 2018, 
standardized to mean zero and standard deviation of one. Regressions are weighted by the number of Cognism resumes in 
2010. All specifications control for the 2-digit NAICS industry sector fixed effects. Columns 2, 4, and 6 also include the baseline 
controls all measured as of 2010: firm-level characteristics (log sales, cash/assets, firm age, and log number of resumes), log 
industry wage, and characteristics of the commuting zones where the firms are located (the share of workers in IT-related 
occupations, the share of college-educated workers, log average wage, the share of foreign-born workers, the share of routine 
workers, the share of workers in finance and manufacturing industries, and the share of female workers). Standard errors are 
clustered at the 5-digit NAICS industry level and reported in parentheses. *, **, and *** denote statistical significance at the 
10%, 5%, and 1% levels, respectively.

Δ Log Sales Δ Log Employment Δ Log Market Value

(1) (2) (3) (4) (5) (6)

Δ Share AI Workers 0.202*** 0.195*** 0.239** 0.181** 0.240** 0.223**

(0.069) (0.069) (0.097) (0.086) (0.093) (0.086)

Industry FE Y Y Y Y Y Y

Controls N Y N Y N Y

Adj R-Squared 0.221 0.422 0.237 0.405 0.247 0.364

Observations 1,052 1,052 1,052 1,052 1,009 1,009
Δ𝐹 𝑖𝑟𝑚𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖,[2010,2018] =𝛽Δ𝑆ℎ𝑎𝑟𝑒𝐴𝐼𝑊 𝑜𝑟𝑘𝑒𝑟𝑠𝑖,[2010,2018]

+𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠′
𝑖,2010𝛾 +𝑆𝑒𝑐𝑡𝑜𝑟𝐹𝐸 + 𝜖𝑖, (2)

where the main independent variable, Δ𝑆ℎ𝑎𝑟𝑒𝐴𝐼𝑊 𝑜𝑟𝑘𝑒𝑟𝑠𝑖,[2010,2018], 
captures the change in the share of AI workers based on the resume 
data at firm 𝑖 from 2010 to 2018, standardized to have a mean of zero 
and a standard deviation of one. As in Section 4.4, this analysis focuses 
on firms in non-tech sectors. 𝑆𝑒𝑐𝑡𝑜𝑟𝐹𝐸 are 2-digit NAICS industry fixed 
effects. In columns 1, 3, and 5 we include only industry fixed effects 
to examine the unconditional relationship between changes in AI in-

vestments and firm growth. In columns 2, 4, and 6, we include a rich 
set of controls that are all measured at the start of the sample period 
in 2010: (i) the initial firm-level characteristics that predict changes in 
AI investments in Section 4.4 (log sales, cash/assets, firm age) and the 
log of the firm’s total Cognism employment24; (ii) characteristics of the 
commuting zones (CZ) where the firms are located (the share of work-

ers in IT-related occupations, the share of college-educated workers, log 
average wage, the share of foreign-born workers, the share of routine 
workers, the share of workers in finance and manufacturing industries, 
and the share of female workers); and (iii) the log industry-average 
wage.25 Out of the 1,993 non-tech firms in the sample in Table 2, 1,472 
firms have positive sales and employment in 2018, which are necessary 
to calculate the dependent variables. We further restrict the sample to 
firms with non-missing control variables throughout, to keep the sam-

ple composition stable. This results in a sample of 1,052 firms. The 
results of the regressions without controls are similar when estimated 
on the entire available sample. Summary statistics on key variables for 
the main regression sample are provided in Online Appendix Table A5.

In columns 1 and 2 of Table 3, the dependent variable is the firm-

level change in log sales from 2010 to 2018. Changes in AI investments 
are associated with a significant and economically meaningful increase 
in sales growth: a one-standard-deviation increase in the share of AI 
workers over an eight-year period corresponds to an additional 19.5% 

24 We control for log employment to address the concern that the share of AI 
workers may be more volatile in firms with fewer total workers. This control 
ensures that the variation in the share of AI workers is between firms with 
similar total employment in Cognism but different numbers of AI workers.
25 When firms span multiple commuting zones, we use the commuting zone 
with the most BG job postings, which restricts the sample in the Cognism re-

gression analysis to firms that are also matched to the Burning Glass data. The 
results are similar in magnitude and economic significance if we only include 
11

firm-level controls enumerated in list (i).
growth in sales. In columns 3 and 4, we find a positive association 
with employment growth of a similar magnitude to the relationship 
with sales. This suggests that AI is not yet displacing firms’ workforces, 
at least on net, although we do not rule out the reallocation of labor 
across different job functions or tasks.26 Columns 5 and 6 show that 
firms investing in AI also see increases in their stock market valuations: 
a one-standard-deviation increase in the share of AI workers is associ-

ated with a 22–24% increase in the firm’s market value.27 It is worth 
noting that the inclusion of firm-level, location-level, and industry-level 
controls in even columns (all measured at the start of the sample period 
in 2010) generally has little effect on the estimated coefficients. This 
makes it unlikely that the results are driven by ex-ante omitted firm 
characteristics (Altonji et al., 2005).

The magnitude of the effects in Table 3 is economically meaning-

ful—on the order of about 2% increase in annual sales growth per 
one-standard-deviation increase in the share of AI workers. Our re-

sults provide initial evidence that hiring AI-skilled labor can have a 
strong positive relationship with firm growth. In this context, our re-

sults are consistent with prior evidence that certain key, high-skilled 
employees—including chief executives, inventors, and entrepreneurs—

can have a disproportionate effect on firm outcomes. It’s also important 
to caution that the correct interpretation of our results is not that in-

vesting in AI workers, without changing any other inputs, will lead to 
an additional 2% in annual sales growth. Instead, the main mechanism 
through which AI appears to stimulate firm growth is product innova-

tion (as we show in Section 6), and the adoption of AI likely necessitates 
investments in other inputs for product development. For this reason, 
we do not interpret the results as directly measuring the return on in-

vestment (ROI) of AI investments, but rather as broader evidence of 
how AI technologies can help stimulate firm growth.

The positive relationship between increases in AI investments and 
firm growth is ubiquitous across different sectors of the economy, re-

inforcing the notion that AI is a general purpose technology. Online 
Appendix Table A7 displays the results from regressing changes in log 

26 In untabulated analyses, we confirm that the results are similar when us-

ing changes in employee counts in the Cognism resume data for the outcome 
variable instead of Compustat employment.
27 Market value is defined as total assets (at), minus the book value of common 
equity (ceq), plus the market value of common equity (prcc_c times csho). Online 
Appendix Table A6 shows that AI investments are also associated with increases 

in unadjusted and risk-adjusted buy-and-hold returns.
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Table 4

Heterogeneous Relationship between AI Investments and Firm Growth by Initial Firm Size Using the Resume-based AI Measure. This table reports the coefficients 
from long-differences regressions of firm growth from 2010 to 2018 on contemporaneous changes in AI investments among U.S. public firms (in non-tech sectors), 
separately for each tercile of initial firm size. Firms in each 2-digit NAICS industry sector are divided into terciles based on employment in 2010. We consider three 
measures of firm-level growth for the dependent variable: changes in log sales (columns 1 and 2), changes in log employment (columns 3 and 4), and changes 
in log market value (columns 5 and 6). The main independent variable is the growth in the share of AI workers (based on the resume data) from 2010 to 2018, 
standardized to mean zero and standard deviation of one. Regressions are weighted by the number of Cognism resumes in 2010. All specifications control for the 
2-digit NAICS industry sector interacted with initial firm size tercile fixed effects. Columns 2, 4, and 6 also include the baseline controls all measured as of 2010: 
firm-level characteristics (log sales, cash/assets, firm age, and log number of resumes), log industry wage, and characteristics of the commuting zones where the 
firms are located (the share of workers in IT-related occupations, the share of college-educated workers, log average wage, the share of foreign-born workers, the 
share of routine workers, the share of workers in finance and manufacturing industries, and the share of female workers). Standard errors are clustered at the 5-digit 
NAICS industry level and reported in parentheses. We report the t-statistics and p-values from the t-tests for the difference between the coefficient of ΔShare AI 
Workers*Size Tercile 1 and the coefficient of ΔShare AI Workers*Size Tercile 3 at the bottom of the table. *, **, and *** denote statistical significance at the 10%, 5%, 
and 1% levels, respectively.

Δ Log Sales Δ Log Employment Δ Log Market Value

(1) (2) (3) (4) (5) (6)

Δ Share AI Workers*Size Tercile 1 0.046** -0.001 0.041** -0.021 0.057* 0.008

(0.023) (0.021) (0.018) (0.031) (0.030) (0.051)

Δ Share AI Workers*Size Tercile 2 0.219*** 0.183*** 0.217*** 0.157*** 0.210*** 0.170***

(0.054) (0.050) (0.048) (0.055) (0.045) (0.050)

Δ Share AI Workers*Size Tercile 3 0.223*** 0.204*** 0.260** 0.182** 0.260** 0.242**

(0.077) (0.076) (0.105) (0.091) (0.102) (0.099)

NAICS2*Size tercile FE Y Y Y Y Y Y

Controls N Y N Y N Y

Adj R-Squared 0.248 0.419 0.253 0.414 0.240 0.347

Observations 1,044 1,044 1,044 1,044 1,002 1,002

T-test statistic 3.7 6.8 3.7 5.3 4.4 8.8

T-test p value 0.054 0.010 0.054 0.022 0.038 0.003
sales and log employment on the change in the share of AI workers, 
separately for the largest 2-digit NAICS sectors: (i) Manufacturing, (ii) 
Wholesale and Retail Trade, (iii) Finance, and (iv) the remaining non-

tech sectors. While we exclude tech sectors from our main analysis, we 
find that AI also has a positive relationship with growth for tech firms 
(see Online Appendix Table A8). Overall, we observe that investments 
in AI are associated with economically significant increases in firms’ op-

erations, and these effects are meaningful across key economic sectors.

However, the benefits from AI investments are not evenly dis-

tributed across the firm size distribution. Table 4 shows the relationship 
between changes in AI investments and firm growth, across terciles of 
firms by employment in 2010 (within the firm’s 2-digit NAICS sector), 
controlling for initial size and sector-by-size-tercile fixed effects. The 
relationship between firm AI investments and firm growth is monoton-

ically increasing in the firm’s initial size. The stronger positive rela-

tionship between changes in AI investments and growth among the ex 
ante larger firms is consistent with big data and AI technologies having 
scale effects that favor large firms, which accumulate large amounts 
of data as a by-product of their economic activity (Farboodi et al., 
2019; Farboodi and Veldkamp, 2022). Akcigit and Kerr (2018) high-

light that larger firms face constraints on their ability to scale due to 
higher costs of new product innovation. The results in Table 4 suggest 
that AI may provide a channel through which large firms can combat 
barriers to innovation and scale by leveraging their data assets. For ex-

ample, biotech firms that have accumulated large troves of proprietary 
samples of molecular compounds are able to leverage AI tools to obtain 
an advantage over competitors.28 On the other hand, the benefits of AI 
are not limited to a few prominent firms: Online Appendix Table A9 
shows that dropping firms in the top 1% or 5% of the size distribution 
has little effect on the full-sample results.
12

28 See here for the PitchBook AI & ML Emerging Tech Report 2021.
5.1.1. Robustness

We show that our results are robust to using alternative construc-

tions of the AI measure and address several identification concerns 
regarding the effects of AI investments on firm growth.

Alternative measures of AI investments. We use the resume-

based share of AI workers as our main measure of AI investments 
because the resume data address two important potential measure-

ment concerns regarding job postings data: (i) the job-postings-based 
measure captures only firms’ demand for AI talent and not their actual 
ability to hire; and (ii) firms might obtain AI expertise through acqui-

sitions, which would not be reflected in job postings but is captured 
in the Cognism resume data, which reflect actual employees, including 
those onboarded through acquisitions.

Nevertheless, in Online Appendix Tables A10–A12, we show that our 
results remain similar when measuring AI using the Burning Glass job 
postings data following the methodology discussed in Section 4. This 
confirms that the job-postings-based measure of AI investments, which 
is highly correlated with the resume-based measure, can also be used to 
assess firm-level benefits of AI. The results are robust to using the share 
of job postings with continuous AI-relatedness measure above various 
cutoffs or the firm-level average continuous AI-relatedness measure.

We next address concerns regarding the skewness of investments in 
AI. Instead of using standardized measures of AI investments, we also 
consider dummy variables indicating whether firms’ AI investments are 
in the top 10 percent or 25 percent of the distribution. Online Appendix 
Table A13 shows that the top 25% of firms in terms of AI investments 
grow their sales by 31% more than other firms and the top 10% of firms 
grow their sales by 54% more than other firms between 2010 and 2018.

Finally, while our measure is centered on internal AI investments, 
our rich resume data allow us to also consider whether firms’ use of ex-

ternal AI solutions might affect the interpretation of our results. Even 
external AI software requires internal data management and implemen-

tation guidance by AI-skilled workers to be effective (Fedyk, 2016), and 
industry reports underscore that AI-skilled labor is the most critical in-

put to successful deployment of AI programs. Nevertheless, we process 
individual job descriptions and job titles in our resume data for any 

mention of external AI software (including IBM Watson, IPSoft Amelia, 

https://pitchbook.com/news/reports/q1-2021-emerging-tech-research-artificial-intelligence-machine-learning
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Symphony, AyasdiAI, Salesforce Einstein, and about a hundred other 
key AI-powered solutions) to construct a proxy for firms’ reliance on 
external AI solutions.29 In Online Appendix Table A14, we confirm that 
our results are robust to directly including this proxy in our overall 
measure of AI investments.

Confounding factors. The estimates above may not reflect the ef-

fects of AI investments if contemporaneous changes at AI-investing 
firms lead to both increased investment in AI and higher firm growth. In 
Section 5.3, we use an instrumental variable strategy to address omitted 
variable bias. Below, we discuss the main confounding factors and pro-

vide evidence that our estimates are not driven by these confounders.

First, we address the possibility that investments in AI are correlated 
with investments in other technologies (e.g., IT). We leverage our de-

tailed data to develop measures of investments in non-AI technologies 
that parallel the measure of AI investments: for each firm, we measure 
the percentage of job postings in each year requiring IT-, robotics- or 
data-related skills that are not specific to AI. In Online Appendix Table 
A15, we control for growth in: (i) investments in (non-AI) IT, (ii) in-

vestments in robots, (iii) investments in non-AI data skills (e.g., “Data 
Cleaning”), and (iv) investments in non-AI-related data analytics (e.g., 
“SAS”). Panel 1 uses the resume-based AI measure, and Panel 2 uses 
the job-postings-based AI measure. The estimated relationship between 
growth in AI investments and firm growth remains similar with the ad-

dition of these controls, confirming that the documented effects on firm 
growth are specifically driven by AI rather than by other technologies.

Second, AI-investing firms may happen to experience positive de-

mand shocks or higher growth trajectories, leading to a positive bias in 
our estimates. In Online Appendix Table A16, we control for detailed in-

dustry fixed effects to absorb industry-specific shocks. The coefficient on 
the changes in AI investments remains stable, and the standard error in-

creases as more granular industry controls absorb more of the variation. 
Moreover, in Online Appendix Tables A17 and A18, we confirm that the 
results are robust to controlling for (i) past industry-level and firm-level 
growth in the decade before our sample period (from 2000 to 2008), 
(ii) Tobin’s Q as of 2010, which proxies for the firm’s future growth 
opportunities, and (iii) state fixed effects, which control for growth 
opportunities and other potential omitted variables at the state level. 
Finally, Online Appendix Table A19 estimates a predictive regression of 
firm growth during the later part of our sample (2015–2020) on growth 
in AI investments during the earlier part of the sample (2010–2015).30

The estimates are qualitatively and quantitatively similar to those in Ta-

ble 3, with milder magnitudes corresponding to the shorter estimation 
period (growth from 2015 to 2020 rather than from 2010 to 2018), 
pointing against reverse causality driving our results. In the next two 
sections, we use a dynamic specification and an IV strategy to further 
address the potential bias from unobserved shocks.

5.2. Dynamic relationship between firm AI investments and firm growth

We augment our long-differences specification by estimating the 
dynamics of firm growth following AI investments. This analysis not 
only offers evidence against reverse causality concerns and AI-investing 
firms being on differential growth trajectories prior to AI investments, 
but also elucidates the lag between AI investments and their realized 
effects.

29 The Cognism resume data are especially well-suited to capture the use 
of external technological solutions, given Cognism’s emphasis on developing 
“technographic data” (defined by Cognism as “the technologies that the em-

ployee or company is using”). Cognism advertises these data for two purposes: 
(i) enhancing technology providers’ targeted marketing of their products and 
(ii) improving individual firms’ understanding of which technologies are used 
by their competitors.
30 In these regressions, we can use firm growth estimated through 2020, be-

cause this specification does not require firm AI data (which end in 2018) to go 
13

beyond 2015.
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We use firm-level panel data to estimate firm growth dynamically 
around AI investments in a distributed lead-lag model, which allows 
for continuous variation in the treatment variable (Stock and Watson, 
2015; Aghion et al., 2020). This specification is especially well-suited 
to our setting, because firms tend to invest in AI on a continuous basis, 
rather than make lumpy investments in a single year, which precludes 
us from examining dynamic effects in a standard event-study framework 
with discontinuous treatment (e.g., before and after a lumpy invest-

ment).31 The standard distributed lead-lag model is specified as:

𝑌𝑖𝑡 =
5∑

𝑘=−2
𝛿𝑘Δ𝑆ℎ𝑎𝑟𝑒𝐴𝐼𝑊 𝑜𝑟𝑘𝑒𝑟𝑠𝑖,𝑡−𝑘 + 𝜇𝑖 + 𝜆𝑛𝑡 + 𝜃𝑠𝑡 + 𝜖𝑖𝑡 (3)

where Δ𝑆ℎ𝑎𝑟𝑒𝐴𝐼𝑊 𝑜𝑟𝑘𝑒𝑟𝑠𝑖,𝑡−𝑘 is the annual change in the share of AI 
workers from year 𝑡 − 𝑘 − 1 to year 𝑡 − 𝑘, normalized to have a mean of 
zero and a standard deviation of one, and 𝑌𝑖𝑡 is either log sales or log 
employment in year 𝑡. We include firm fixed effects 𝜇𝑖 to absorb firm-

specific time-invariant factors, and 2-digit NAICS industry-year fixed 
effects 𝜆𝑛𝑡 and state-year fixed effects 𝜃𝑠𝑡 to control for industry-specific 
and state-specific trends. Each lead-lag coefficient 𝛿𝑘 captures the cu-

mulative response of the outcome variable in year 𝑡 to AI investments 
in year 𝑡 − 𝑘, holding fixed the path of AI investments in all other 
years. As such, specification (3) incorporates both immediate and de-

layed responses of firm size to firms’ AI investments.32 The estimated 
coefficients for the leads can be used as a pre-trend test: if firms in-

vesting in AI are on similar growth trends as other firms prior to AI 
investments, 𝛿𝑘 with 𝑘 < 0 should be statistically indistinguishable from 
zero.33

Fig. 3 reports the coefficients from the lead-lag regressions. The 
top panel shows that sales increase following AI investments, but not 
immediately—it takes two to three years for firms to realize the benefits 
from AI investments. The cumulative effect of a one-standard-deviation 
increase in annual AI investments on log annual sales is 1.5%–2% 
and remains steady five years out. This is consistent with the long-

differences estimates in Section 5.1, where a one-standard-deviation 
increase in AI investments is associated with a 19.5% increase in sales 
over eight years. The bottom panel shows that AI investments are asso-

ciated with a similar increase in firms’ employment. Importantly, there 
is no evidence of pre-trends in either outcome variable: conditional on 
the controls we include, firms that invest more in AI in any given year 
show comparable sales and employment paths in prior years and start 
diverging only afterwards. This provides additional evidence that our 
results are not capturing the reverse effect of firm growth on AI invest-

ments or the effect of omitted variables placing AI-investing firms on 
differential growth trajectories, helping to bolster a causal interpreta-

tion of our main results.

5.3. Instrumental variable estimates

In this section, we instrument firm-level changes in AI investments 
using firms’ exposure to the supply of AI talent from U.S. universities. 
This helps to isolate variation in firms’ AI investments that comes from 
the supply of AI labor, mitigating potential bias from demand shocks 

31 The percentage of AI-investing firms that only invest in a single year is 
29.5%, compared to 70.6% for robotics (Humlum, 2019).
32 For each firm-year observation of sales or employment between 2010 and 
2016, we consider five lags and two leads, so that we estimate the cumulative 
impact of AI investments on firm growth from two years before the investments 
to five years after the investments. Since the data on AI investments end in 
2018, we include only two leads to keep all firm-year observations up to 2016. 
We obtain similar results when including only one lead or no leads at all.
33 It is worth noting that, given that the independent variables in this dis-

tributed lead-lag model are changes in continuous AI investments instead of 
period dummies as would be the case in a standard event-study framework, we 

cannot normalize the estimates to an exact zero for any given period.
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Fig. 3. AI Investments and Firm Growth Over Time. This figure plots the coeffi-

cients from the distributed lead-lag model. The dependent variable is annual log 
sales in Panel (a) and log employment in Panel (b). The independent variable 
is the annual change in the share of AI workers in the Cognism resume data, 
standardized to have a mean of zero and a standard deviation of one. Regres-

sions include firm-level sales (or employment) observations between 2010 and 
2016 and control for firm fixed effects, 2-digit NAICS industry-by-year fixed ef-

fects, and state-by-year fixed effects. Regressions are weighted by the number of 
workers in the Cognism resume data. The vertical bars indicate 95% confidence 
intervals. Standard errors are clustered at the 5-digit NAICS level.

driving both firms’ AI investments and growth. The scarcity of AI talent 
is a key constraint to firms’ adoption of AI technologies, and the IV es-

timates are directly informative about the treatment effects of policies 
targeting the supply of AI labor and relaxing the constraints of AI adop-

tion (e.g., funding university AI research and training AI-skilled human 
capital, Babina et al., 2023c). At the same time, academic research in 
AI has been ongoing for much longer than commercial interest in AI. As 
a result, firms’ preexisting connections to AI-strong universities offer an 
arguably exogenous source of variation in firms’ access to the supply of 
AI talent during the 2010s boom in commercial interest in AI.

In particular, we instrument firm-level changes in AI investments 
using variation in firms’ ex-ante exposure to the supply of AI talent 
from universities that are historically strong in AI research. The core 
idea is that the scarcity of AI-trained labor is one of the most impor-
14

tant constraints to firms’ AI adoption (e.g., CorrelationOne, 2019), and 
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universities that are historically strong in AI research have been able 
to train more AI-skilled graduates in recent years, enabling firms that 
typically hire from those universities to more readily attract AI talent. 
This intuition is motivated by the evidence of the spillover effects from 
academic science to industrial research and technology adoption in the 
U.S. (Furman and MacGarvie, 2007). Since commercial interest in AI 
became widespread only around 2012, we argue (and offer empirical 
support) that firms’ connections to AI-strong universities in 2010 were 
not driven by the need to hire AI-skilled workers, especially for the sam-

ple of non-tech firms that are the focus of this paper. To construct the 
instrument, we compile two datasets on: (i) the ex-ante strength of AI 
research in each university, and (ii) firm-university hiring networks. To 
the best of our knowledge, there is no comprehensive historical data on 
either of these two aspects. We briefly discuss the construction of both 
datasets below, with a more comprehensive discussion in Appendix A.

To identify universities strong in AI research before 2010, we use 
data from the Open Academic Graph (OAGv2), which provides the most 
comprehensive openly available repository of scholarly work since 1870 
(Tang et al., 2008; Sinha et al., 2015). We match 689 research institu-

tions in the National Science Foundation’s Higher Education Research 
and Development Survey (HERDS) to researchers in the OAGv2 and 
work with the field experts at the AI for Good Foundation to identify 
AI-related publications. We classify each AI researcher based on the 
share of AI publications in that researcher’s overall portfolio, and we 
classify universities as AI-strong if their number of AI researchers is at 
the top of the distribution over 2005–2009 (i.e., in the top 5%).

We construct the firm-university hiring networks by leveraging our 
resume data to observe the universities granting the degrees of each 
firm’s employees.34 For the firm-university hiring networks to provide 
the necessary variation for our instrumental variable strategy, different 
firms need to hire from different sets of universities, and these networks 
need to be persistent over time. Our data show evidence of both: each 
firm tends to concentrate its hiring in a small number of universities, 
and ex-ante networks (i.e., which universities each firm hired from be-

fore 2010) strongly predict the universities from which firms hire after 
2010 (see Appendix Table A.1).

We define our instrument for each firm 𝑖 as: 𝐼𝑉𝑖 =
∑
𝑢 𝑠

2010
𝑖𝑢

𝐴𝐼𝑠𝑡𝑟𝑜𝑛𝑔𝑢, 
where 𝑠2010

𝑖𝑢
is the share of STEM workers in firm 𝑖 in 2010 who grad-

uated from university 𝑢, and 𝐴𝐼𝑠𝑡𝑟𝑜𝑛𝑔𝑢 equals one if university 𝑢 is 
identified as an AI-strong university based on pre-2010 publications.35

We use pre-2010 publications to measure AI-strong universities because 
research in AI has flourished in universities long before 2010, while 
commercial use of AI began after 2010. Thus, post-2010 publications 
may be affected by the demand for AI from the firms that universities 
are connected to, whereas pre-2010 publications are an arguably exoge-

nous measure of universities’ AI talent.

A key concern with our instrument is that AI-strong universities may 
also be different in other ways. First, if universities that are strong in AI 
research are also strong in the broader field of computer science (CS), 
producing more CS-skilled graduates, this might affect firm outcomes 
through channels other than AI investments. Second, if AI-strong uni-

versities are ranked highly in general, then high-quality firms—who are 

34 Aggregated to the university-year level, our resume data cover, on average, 
59% of all degrees conferred by each university according to data in the Inte-

grated Postsecondary Education Data System (IPEDS), and the number of fresh 
graduates in the resume data is highly correlated with the total number of de-

grees conferred (correlation=0.73) in the IPEDS data. Confirming the relevance 
of our measure of AI-strong universities, Appendix Fig. A.2 shows that the in-

crease in AI-trained graduates during the 2010s was much more pronounced in 
ex-ante AI-strong universities than in non-AI-strong universities.
35 We use firm-university hiring networks based on STEM workers to account 
for potential segmentation in firms’ hiring networks, where business employ-

ees may be hired from different universities than technically-skilled employ-

ees. However, empirically, firm-university hiring networks constructed from all 

workers yield similar results.
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Table 5

AI Investments and Firm Growth: IV Estimates Using the Resume-based AI Measure. This table estimates the relationship between AI investments and firm growth 
from 2010 to 2018 for U.S. public firms (in non-tech sectors), where firm AI investments are instrumented with ex-ante firm-level exposure to AI-skilled graduates 
from AI-strong universities (see the definition of the instrument in Section 5.3 and the details of instrument construction in Appendix A). The independent variable 
is the change in the share of AI workers from 2010 to 2018 based on the resume data. Regressions are weighted by the number of Cognism resumes in 2010. The 
independent variable and the instrument are standardized to mean zero and standard deviation of one. We consider changes in log sales in columns 1 to 4, log 
employment in columns 5 to 8, and log market value in columns 9 to 12. All specifications control for the 2-digit NAICS industry sector fixed effects and ex-ante 
exposure to universities that are strong in computer science research as well as top 10 universities. Columns 2–4, 6–8, and 10–12 also control for the baseline 
controls all measured as of 2010: firm-level characteristics (log sales, cash/assets, firm age, and log number of resumes), log industry wage, and characteristics of 
the commuting zones where the firms are located (the share of workers in IT-related occupations, the share of college-educated workers, log average wage, the share 
of foreign-born workers, the share of routine workers, the share of workers in finance and manufacturing industries, and the share of female workers). Columns 3–4, 
7–8, and 11–12 additionally control for firm-level changes in log sales and log employment from 2000 to 2008. Columns 4, 8, and 12 add state fixed effects. Standard 
errors are clustered at the 5-digit NAICS industry level and reported in parentheses. The first-stage F-statistics of the instrument are reported for all specifications. *, 
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Δ Log Sales Δ Log Employment Δ Log Market Value

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Δ Share AI Workers 0.360*** 0.510*** 0.467*** 0.317** 0.466*** 0.712*** 0.584*** 0.330** 0.449*** 0.529*** 0.470*** 0.360*

(0.101) (0.125) (0.137) (0.152) (0.154) (0.224) (0.194) (0.163) (0.129) (0.160) (0.172) (0.184)

Industry FE Y Y Y Y Y Y Y Y Y Y Y Y

University Control Y Y Y Y Y Y Y Y Y Y Y Y

Baseline Controls N Y Y Y N Y Y Y N Y Y Y

Control Pre-trend N N Y Y N N Y Y N N Y Y

State FE N N N Y N N N Y N N N Y

F Statistic 12.7 19.3 15.7 18.7 12.7 19.3 15.7 18.7 12.8 19.5 15.5 19.3

Observations 1,001 1,001 777 773 1,001 1,001 777 773 963 963 753 746
likely to grow regardless of AI—may hire from AI-strong universities 
purely by hiring from highly-ranked universities. To address these con-

cerns, we control for firms’ ex-ante exposure to CS-strong universities 
and top-ranked universities. In particular, we construct analogous mea-

sures of firms’ ex-ante exposure to CS-strong and top-10 universities: ∑
𝑢 𝑠

2010
𝑖𝑢

𝐶𝑆𝑠𝑡𝑟𝑜𝑛𝑔𝑢 and ∑𝑢 𝑠
2010
𝑖𝑢

𝑇 𝑜𝑝10𝑢, where 𝐶𝑆𝑠𝑡𝑟𝑜𝑛𝑔𝑢 is the average 
pre-2010 share of (non-AI) CS researchers at university 𝑢, and 𝑇 𝑜𝑝10𝑢
equals one if a university is among the top 10 universities ranked by 
the U.S. News & World Report.

Another potential concern regarding our instrument is that firms 
that anticipated the surge in demand for AI may have started building 
their connections to AI-strong universities before 2010, making firm-

university hiring networks in 2010 endogenous to firms’ demand for 
AI-trained students. However, this runs counter to the lack of both com-

mercial interest in AI by firms and AI-skilled graduates by universities 
prior to 2010 (see Appendix Fig. A.2). Moreover, we confirm empir-

ically that firms connected to AI-strong universities in 2010 did not

increase their share of hired fresh graduates from those universities 
from 2005 to 2010 (see Appendix Table A.2).

Appendix Table A.3 shows the first-stage results. We control for in-

dustry fixed effects and exposure to CS-strong and top-10 universities in 
all columns. We sequentially add (i) baseline controls (firm-, industry-, 
and commuting-zone-level controls) in column 2, (ii) pre-period firm 
sales and employment growth between 2000 and 2008 to address un-

observable firm characteristics that might simultaneously drive firms’ 
growth trajectories and their hiring of AI workers in column 3, and 
(iii) state fixed effects to control for local labor market characteristics 
that might drive both firms’ AI hiring and their growth in column 4. 
The instrument has a strong first stage with F-statistics above 10 for 
all specifications and close to 20 when all controls are included. On-

line Appendix Figure A8 plots the reduced form relationship between 
the instrument and firm growth. For all three outcome variables (sales, 
employment, and market value), we see a strong positive relationship 
between firms’ ex-ante exposure to AI-strong universities and subse-

quent growth. In contrast, Appendix Table A.4 shows that firms that 
are more exposed to AI-strong universities are not growing faster before 
2010. This is consistent with the exclusion restriction that the instru-

ment only affects firm growth through firms’ AI investments after 2010.

Table 5 presents the 2SLS estimates. The results show a robust and 
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significant effect of AI investments on sales (columns 1–4), employment 
(columns 5–8), and market value (columns 9–12). When all controls are 
included, a one-standard-deviation increase in AI investments leads to 
a 32% increase in sales, a 33% increase in employment, and a 36% 
increase in stock market valuations. The magnitudes are about 50% 
larger than OLS estimates, which may be due to measurement error or 
a negative bias from firms with lower opportunity costs of innovation 
and lower growth prospects investing in AI.36 It is important to note, 
however, that the OLS and IV coefficients are not statistically different. 
This suggests that the difference between the point estimates could also 
be driven by estimation error. We conduct a series of robustness checks 
of our IV results in Online Appendix Tables A20–A23, discussed in detail 
in Appendix A.

6. Mechanisms

We examine the drivers of AI-fueled firm growth by considering the 
two non-mutually-exclusive mechanisms detailed in Section 2. We doc-

ument that AI-investing firms are able to significantly increase their 
product innovation and find no evidence of reductions in operating 
costs.

6.1. AI as a driver of product innovation

AI can contribute to firm growth via product innovation by (i) fa-

cilitating the creation of new and improved products and (ii) increas-

ing product scope through improved tailoring of products to customer 
tastes. To explore this empirically, we need firm-level data on prod-

ucts and services, which are challenging to obtain, especially across 
different sectors. We overcome this challenge by using three proxies for 
firms’ product innovation. We examine product innovation using our 
main long-differences specification from Equation (2).

First, we examine whether AI-investing firms experience increases 
in trademarks, which are registered whenever new products or services 
are ready for commercialization and therefore offer a good proxy for 
the creation of new products and services (Hsu et al., 2021). Columns 
1 and 2 in Table 6 present the results looking at the changes in firms’ 
USPTO trademarks against growth in their AI investments, showing that 

36 Consistent with this notion, controlling for log sales in 2010 increases the 
coefficient on AI investments, and the coefficient on the log sales control itself 

is negative.
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Table 6

AI Investments and Product Innovation Using the Resume-based AI Measure. This table reports the coefficients from long-

differences regressions of the changes in measures of product innovation from 2010 to 2018 on the contemporaneous changes 
in AI investments by U.S. public firms (in non-tech sectors). The dependent variables are the change in log(1+number of 
trademarks) in columns 1 and 2; the change in log(1+number of product patents) in columns 3 and 4; and the change in the 
product mix in columns 5 and 6. Product patents are patents with over 50% of the claims being product claims, following 
the categorization in Ganglmair et al. (2021). The change in the product mix is measured as the sum of annual changes from 
2010 to 2018, where each annual change is the angle between the two word vectors indicating firms’ product offerings in 
that year and the previous year (the word vectors are constructed as in Hoberg et al. (2014)). The main independent variable 
is the resume-based measure of the growth in the share of AI workers from 2010 to 2018, which is standardized to mean 
zero and standard deviation of one. Regressions are weighted by the number of Cognism resumes in 2010. All specifications 
control for the 2-digit NAICS industry sector fixed effects. Columns 2, 4, and 6 also include the baseline controls all measured 
as of 2010: firm-level characteristics (log sales, cash/assets, firm age, and log number of resumes), log industry wage, and 
characteristics of the commuting zones where the firms are located (the share of workers in IT-related occupations, the share 
of college-educated workers, log average wage, the share of foreign-born workers, the share of routine workers, the share 
of workers in finance and manufacturing industries, and the share of female workers). Columns 1 and 2 control for the log 
number of trademarks from 2009 to 2010, and columns 3 and 4 control for the log number of patents from 2005 to 2010. 
Standard errors are clustered at the 5-digit NAICS industry level and reported in parentheses. *, **, and *** denote statistical 
significance at the 10%, 5%, and 1% levels, respectively.

Δ Log Number of Δ Log Number of

Trademarks Product Patents Change in Product Mix

(1) (2) (3) (4) (5) (6)

Δ Share AI Workers 0.144** 0.134* 0.221*** 0.239*** 0.149*** 0.059

(0.065) (0.078) (0.035) (0.031) (0.036) (0.038)

Industry FE Y Y Y Y Y Y

Controls N Y N Y N Y

Observations 550 550 619 619 958 958
AI-investing firms significantly increase their trademark portfolios. A 
one-standard-deviation increase in the share of AI workers is associated 
with approximately 13% more trademarks.37 Second, columns 3 and 4 
reveal a similar relationship between AI investments and the number 
of product patents, which are patents specifically focusing on prod-

uct innovations.38 While trademarks are registered with the creation 
of new products, product patents reflect both new product creation and 
innovations in the quality of existing product lines. We find that a one-

standard-deviation increase in the share of AI workers over eight years 
corresponds to about 23% increase in the number of product patents.

Finally, we build a measure of changes in firms’ product mix based 
on the self-fluidity measure in Hoberg et al. (2014). Using firm 10K 
filings, Hoberg et al. (2014) take the cosine similarity between word 
vectors describing a firm’s product offerings in two adjacent years to 
measure the extent to which the firm’s product offerings changed in 
a given year. These changes reflect both the creation of new products 
and the tailoring of existing products to evolving consumer tastes.39

In column 5, we find that growth in AI investments is associated with 
increased changes in firms’ product mix, but the relationship becomes 
statistically insignificant when adding additional controls in column 6. 

37 The dependent variable is the change in log(1 + number of trademarks) 
from 2010 to 2018, so that the regression takes into account firms with zero 
trademarks in either 2010 or 2018. The results are also robust to using the 
inverse hyperbolic sine transformation (i.e., ln(𝑥 +

√
(1 + 𝑥2))). The regression 

sample is smaller than our baseline sample, because not all public firms file 
trademarks (we include firms with at least one trademark in 2009–2018).
38 See Ganglmair et al. (2021) for the methodology to distinguish between 
product patents and process patents. The regression sample is smaller than our 
baseline sample, because not all public firms file patents, and we only include 
firms with at least one patent during 2005–2018. The dependent variable is the 
change in log(1 + number of product patents) from 2010 to 2018.
39 We use the same word vectors as Hoberg et al. (2014) and construct our 
measure as follows: for each year, we calculate the angle between the two word 
vectors indicating firms’ product offerings in that year and the previous year. 
For example, the measure equals 0 if the product offerings remain exactly the 
same and 𝜋∕2 if the product offerings change completely. We sum up the angle 
of each year over eight years from 2010 to 2018 to measure the total change in 
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firms’ product portfolios from 2010 to 2018.
Online Appendix Table A24 shows that the results on all three product 
innovation measures remain similar when using the job-postings-based 
AI measure.

Table 7 shows that the instrumented AI investments also have a posi-

tive relationship with the number of trademarks, the number of product 
patents, and the change in product offerings (although not always sig-

nificant). Overall, the results point towards firms utilizing AI to expand 
product variety and customization, consistent with surveys of corpo-

rate executives, who highlight product improvement and creation as 
the main use of AI so far (see here).

6.2. AI as a driver of lower operating costs

We next test whether the increase in firm growth from AI invest-

ments could reflect AI technologies lowering firms’ operating costs, 
increasing firm-level productivity, and improving process innovation. 
First, in columns 1 to 4 of Table 8 we look at costs directly by consid-

ering how growth in firms’ AI investments relates to changes in costs of 
goods sold (COGS) and operating expenses. AI investments are associ-

ated with increases in costs that are similar in magnitude to increases 
in firm sales, suggesting that AI is not associated with lower average 
operating costs.

Second, columns 5 to 8 of Table 8 consider two measures of produc-

tivity: sales per worker (i.e., labor productivity) and revenue TFP. The 
relationship between AI investments and both productivity measures is 
consistently insignificant. The lack of growth in labor productivity is 
consistent with the results in Section 5 that AI investments predict sim-

ilar increases in sales and employment, challenging the view that the 
primary effect of AI so far is to replace jobs.40 Furthermore, in columns 

40 It is worth noting that both sales per worker and revenue TFP are revenue-

based measures of productivity and may not fully reflect actual physical produc-

tivity. For example, sales per worker and revenue TPF may provide downward-

biased estimates of actual productivity changes if quantities produced increase 
to such an extent that lower prices are charged (Foster et al., 2008; Garcia-Marin 
and Voigtländern, 2019; Caliendo et al., 2020). To consider this possibility, in 
untabulated analyses we find that there are no changes in AI-investing firms’ 

markups.

https://www2.deloitte.com/content/dam/insights/us/articles/4780_State-of-AI-in-the-enterprise/DI_State-of-AI-in-the-enterprise-2nd-ed.pdf
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Table 7

AI Investments and Product Innovation: IV Estimates Using the Resume-based AI Measure. This table estimates the relationship between AI investments and product 
innovation from 2010 to 2018 for U.S. public firms (in non-tech sectors), where firms’ AI investments are instrumented with ex-ante firm-level exposure to AI-skilled 
graduates from AI-strong universities (see the definition of the instrument in Section 5.3 and the details of instrument construction in Appendix A). The independent 
variable is the change in the share of AI workers from 2010 to 2018 based on the resume data. The independent variable and the instrument are standardized to mean 
zero and standard deviation of one. Regressions are weighted by the number of Cognism resumes in 2010. We consider the change in log(1+number of trademarks) 
in columns 1 to 4, the change in log(1+number of product patents) in columns 5 to 8, and the change in the product mix in columns 9 to 12. Product patents are 
patents with over 50% of the claims being product claims, following the categorization in Ganglmair et al. (2021). The change in the product mix is measured as the 
sum of annual changes from 2010 to 2018, where each annual change is the angle between the two word vectors indicating firms’ product offerings in that year and 
the previous year, following Hoberg et al. (2014). All specifications control for the 2-digit NAICS industry sector fixed effects and ex-ante exposure to universities 
that are strong in computer science research as well as top 10 universities. Columns 2–4, 6–8, and 10–12 also include the baseline controls all measured as of 2010: 
firm-level characteristics (log sales, cash/assets, firm age, and log number of resumes), log industry wage, and characteristics of the commuting zones where the 
firms are located (the share of workers in IT-related occupations, the share of college-educated workers, log average wage, the share of foreign-born workers, the 
share of routine workers, the share of workers in finance and manufacturing industries, and the share of female workers). Columns 3, 4, 7, 8, 11, and 12 additionally 
control for firm-level changes in log sales and log employment from 2000 to 2008. Columns 4, 8, and 12 add state fixed effects. Columns 1–4 control for the log 
number of trademarks from 2009 to 2010, and columns 5–8 control for the log number of patents from 2005 to 2010. Standard errors are clustered at the 5-digit 
NAICS industry level, and reported in parentheses. The first-stage F-statistics of the instrument are reported for all specifications. *, **, and *** denote statistical 
significance at the 10%, 5%, and 1% levels, respectively.

Δ Log Number of Δ Log Number of

Trademarks Product Patents Change in Product Mix

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Δ Share AI Workers 0.223 0.519 0.640** 0.648** 0.242 0.260 0.481*** 0.430* 0.185 0.187 0.281 0.314

(0.217) (0.347) (0.321) (0.278) (0.168) (0.201) (0.175) (0.238) (0.286) (0.315) (0.322) (0.325)

Industry FE Y Y Y Y Y Y Y Y Y Y Y Y

University Control Y Y Y Y Y Y Y Y Y Y Y Y

Baseline Controls N Y Y Y N Y Y Y N Y Y Y

Control Pre-trend N N Y Y N N Y Y N N Y Y

State FE N N N Y N N N Y N N N Y

F Statistic 11.8 10.5 8.5 15.9 11.5 23.8 36.9 34.6 13.1 22.2 16.0 21.8

Observations 528 528 435 426 586 586 479 469 932 932 725 717

Table 8

AI Investments and Operating Costs Using the Resume-based AI Measure. This table reports the coefficients from long-differences regressions of changes in firm 
operating costs and firm productivity from 2010 to 2018 on contemporaneous changes in AI investments by U.S. public firms (in non-tech sectors). The main 
independent variable is the change in the share of AI workers (based on the resume data) from 2010 to 2018, standardized to mean zero and standard deviation 
of one. We look at two measures of operating costs: log COGS in columns 1 and 2 and log operating expenses in columns 3 and 4. We consider two measures of 
productivity: log sales per worker (columns 5–6) and revenue TFP (columns 7–8). Revenue TFP is the residual from regressing log revenue on log employment and 
log capital (constructed using the perpetual inventory method), with separate regressions for each industry sector. In columns 9 and 10, the dependent variable is 
the change in log(1+number of process patents), where process patents are patents with over 50% of the claims being process claims, following the categorization in 
Ganglmair et al. (2021). Regressions are weighted by the number of Cognism resumes in 2010. All specifications control for the 2-digit NAICS industry sector fixed 
effects. Columns 2, 4, 6, and 8 also include the baseline controls all measured as of 2010: firm-level characteristics (log sales, cash/assets, firm age, and log number 
of resumes), log industry wage, and characteristics of the commuting zones where the firms are located (the share of workers in IT-related occupations, the share 
of college-educated workers, log average wage, the share of foreign-born workers, the share of routine workers, the share of workers in finance and manufacturing 
industries, and the share of female workers). Columns 9 and 10 also control for the log number of patents before 2010. Standard errors are clustered at the 5-digit 
NAICS industry level and reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Δ Log Δ Log Δ Log Sales Δ Revenue Δ Log Number of

COGS Operating Expense per Worker TFP Process Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Δ Share AI Workers 0.195*** 0.177*** 0.206*** 0.191*** -0.036 0.013 -0.049 -0.003 -0.010 0.014

(0.052) (0.053) (0.066) (0.065) (0.028) (0.022) (0.046) (0.037) (0.039) (0.054)

Industry FE Y Y Y Y Y Y Y Y Y Y

Controls N Y N Y N Y N Y N Y

Adj R-Squared 0.213 0.390 0.237 0.420 0.176 0.322 0.222 0.358 0.700 0.747

Observations 1,052 1,052 1,052 1,052 1,052 1,052 977 977 619 619
9 and 10, we bring another proxy for efficiency gains that complements 
revenue-based measures of productivity: process patents, which reflect 
process innovations and potential improvements in efficiency. We find 
a zero relationship between AI investments and process innovation, in 
contrast to the large increase in product patents documented in Table 6. 
Online Appendix Tables A25 and A26 show similarly insignificant re-

lationships with productivity measures and process patents using the 
job-postings-based AI measure and the instrumented AI investments, 
respectively.

Overall, we find that AI technologies benefit firms through prod-
17

uct innovations rather than through reductions in operating expenses 
or improvements in productivity. This contrasts with previous general 
purpose technologies, such as electricity, which led to rapid productiv-

ity gains (Fizsbein et al., 2020). This juxtaposition of results is consistent 
with Acemoglu et al. (2022a), who use U.S. Census data and find no cor-

relation between artificial intelligence and labor productivity, but find 
positive productivity effects for other technologies such as robotics and 
specialized software.

One potential explanation for the lack of productivity growth is the 
productivity J-curve proposed by Brynjolfsson et al. (2021). In particu-

lar, productivity growth from investing in general purpose technologies 

may be initially underestimated, because capital and labor are spent to 
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Table 9

AI Investments and Changes in Industry Growth and Concentration Using the Resume-based AI Measure. This table reports the coefficients from industry-level 
long-differences regressions of the changes in industry sales, employment, and concentration on contemporaneous changes in industry-level AI investments. All 
industry-level variables are calculated for all firms in Compustat (regardless of whether they are in our main regression sample in Table 3 or not). Each observation 
is a 5-digit NAICS industry, and (as in our main analysis) we exclude tech sectors. The independent variable is the change in the share of AI workers (based on 
the resume data) from 2010 to 2018, standardized to mean zero and standard deviation of one. Regressions are weighted by the total (industry-level) number of 
Cognism resumes. The dependent variables are the changes, from 2010 to 2018, in log total sales in columns 1 and 2, log total employment in columns 3 and 4, 
the Herfindahl-Hirschman Index (HHI) in columns 5 and 6, and the market share of the top firm in an industry in columns 7 and 8. All specifications control for 
the 2-digit NAICS industry sector fixed effects. Regressions in columns 2, 4, 6, and 8 also include industry-level controls for log total employment, log total sales, 
and log average wage in 2010. Standard errors are robust against heteroskedasticity and reported in parentheses. *, **, and *** denote statistical significance at the 
10%, 5%, and 1% levels, respectively.

Δ Log Sales Δ Log Employment Δ HHI Δ Top Firm Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Share AI Workers 0.169*** 0.173*** 0.195*** 0.201*** 0.018*** 0.012* 0.022*** 0.014*

(0.055) (0.050) (0.069) (0.067) (0.007) (0.007) (0.007) (0.007)

Industry Sector FE Y Y Y Y Y Y Y Y

Controls N Y N Y N Y N Y

Observations 275 275 275 275 275 275 275 275
accumulate unmeasured output in the form of intangible capital that 
complements the new technology. In Online Appendix Table A27, we 
examine the effect of changes in AI investments during the first half 
of the period (2010–2014) on productivity growth through 2018 and 
do not find any significant positive effect. Hence, even with a lag of 
a few years, AI investments are not yet associated with productivity 
improvements. Besides, while the productivity J-curve reflects forgone 
measurable output in the short run, we find a significant and positive 
effect on sales growth two to three years following AI investments. Our 
evidence suggests that at least so far, AI mostly stimulates firm growth 
through product innovation. As we discuss in Online Appendix A1, the 
effect of product innovation on productivity is theoretically ambiguous 
since firms may have higher or lower productivity in the new product 
lines. Our empirical results suggest that AI-investing firms are able to 
maintain the same level of productivity at a larger scale. These findings 
align with recent work documenting that investments in technologies in 
recent years are associated with increased scale of the firm but no pro-

ductivity gains (Aghion et al., 2019; Curtis et al., 2021; Hirvonen et al., 
2022).

7. AI investments and industry-level outcomes

To shed light on the potential aggregate effects of AI, we exam-

ine the relationship between industry-level variation in AI investments 
and: (i) industry growth; and (ii) industry concentration. While AI-

investing firms grow faster, the industry-level gains may be zero-sum if 
the use of AI technologies creates a business-stealing effect on competi-

tors (Bloom et al., 2013). For example, negative spillovers have been 
shown to dominate positive firm-level effects in the case of robotics, 
leading to an overall negative effect on aggregate employment (Ace-

moglu et al., 2020; Benmelech and Zator, 2022). Hence, signing the 
relationship between industry AI investments and industry growth is an 
empirical question. We estimate the following long-differences regres-

sion at the industry level:

Δln𝑦𝑗,[2010,2018] =𝛾Δ𝑆ℎ𝑎𝑟𝑒𝐴𝐼𝑊 𝑜𝑟𝑘𝑒𝑟𝑠𝑗,[2010,2018]

+𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠′
𝑗,2010𝛾 + 𝑆𝑒𝑐𝑡𝑜𝑟𝐹𝐸 + 𝜖𝑗 , (4)

where Δ ln𝑦𝑗,[2010,2018] is the change in total sales or employment 
for all Compustat firms (including those that entered the sample af-

ter 2010 or exited before 2018) in 5-digit NAICS industry 𝑗, and 
Δ𝑆ℎ𝑎𝑟𝑒𝐴𝐼𝑊 𝑜𝑟𝑘𝑒𝑟𝑠𝑗,[2010,2018] is the change in the share of AI workers 
among Compustat firms in industry 𝑗 from 2010 to 2018. Analogously 
to the firm-level tests, the regressions are weighted by the total number 
of resumes in each industry in 2010.

Columns 1 to 4 of Table 9 show that AI investments are associ-
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ated with a robust increase in employment and sales at the industry 
level. Odd columns estimate the unconditional relationship (with 2-

digit NAICS industry fixed effects only), and even columns add controls 
for log employment, log sales, and log average wages at the industry 
level in 2010. For example, with the full set of controls, a one-standard-

deviation increase in the industry-level share of AI workers in the 
resume data is associated with a 17% increase in sales and a 20% in-

crease in employment. Importantly, in Online Appendix Table A28, we 
show that the results remain similar when we restrict the sample to 
firms that are in the Compustat sample both in 2010 and 2018 (i.e., 
excluding entrants and exits). This indicates that sample selection is-
sues are not driving our main results for publicly traded firms.41 Due to 
data limitations, our analysis does not capture cross-industry spillovers, 
where firms from one industry steal business of firms in other industries. 
Nevertheless, our results suggest that within-industry business-stealing 
effect is unlikely to dominate the positive firm-level growth from AI.

We next examine whether the higher AI-fueled growth among larger 
firms is substantial enough to translate into increased industry concen-

tration. We link industry-level growth in AI investments to contempora-

neous changes in industry concentration from 2010 to 2018. Following 
Autor et al. (2020), we use the Herfindahl-Hirschman Index (HHI) to 
measure industry concentration. To examine winner-take-most dynam-

ics, we also consider the fraction of sales accruing to the largest firm in 
each 5-digit NAICS industry among the Compustat firms. Columns 5 to 
8 of Table 9 show a robust positive relationship between industry-level 
growth in AI investments and changes in industry concentration. Online 
Appendix Table A29 shows consistent results using the industry-level 
share of AI-related job postings in Burning Glass as the independent 
variable.

To shed light on industry-level growth and concentration beyond 
public firms, we use data from the Economic Census to calculate 
industry-level sales, employment, and concentration measures in Online 
Appendix Table A30. We look at 2012–2017 changes because the Eco-

nomic Census is available every 5 years.42 The increase in industry-level 
sales and employment is significant, but smaller than in the industry-

level analysis constructed from the sample of Compustat firms in Ta-

41 A caveat with these results is that the Compustat sample assigns each firm to 
a single main industry, even for firms that might have operations in several in-

dustries. This caveat is unlikely to affect the interpretation of our results, given 
that prior research using U.S. Census micro data shows that for a typical U.S. 
public firm, the large majority of its operations fall within one main industry 
(Babina, 2020).
42 The independent variable is the industry-level change in the share of AI 
workers among Compustat firms, since we do not have the industry information 
for non-Compustat firms. This could induce measurement error and, therefore, 

this result should be interpreted with caution.
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ble 9. On the other hand, the increase in HHI becomes larger, and there 
is a significant increase in the market share of the four largest firms for 
AI-investing industries. Since publicly-listed firms are on average larger 
than private firms, this further supports the interpretation that gains 
from AI technologies accrue mostly to large, established firms that have 
the requisite data and resources.

Since AI-investing industries may differ from other industries in 
other ways during the time period we look at, our estimates do not nec-

essarily reflect the direct causal effect of AI investments on industries. 
However, our results suggest that, as a general purpose technology that 
can be applied across many industries, AI is associated with increased 
concentration across a broad range of industries by facilitating product 
innovation and expansion for the largest firms. These findings support 
the argument by Crouzet and Eberly (2019) that investments in intangi-

ble assets are responsible for the rise in industry concentration observed 
in the U.S. data.

8. Conclusion

In this paper, we study how firms invest in and benefit from one 
of the most important new technologies of the last decade—artificial 
intelligence. We introduce a novel measure of investments in AI tech-

nologies at the firm level using two detailed datasets on human capital: 
resume data from Cognism, which reveal the actual composition of each 
firm’s workforce, and job postings from Burning Glass Technologies, 
which indicate each firm’s demand for particular skills. Our unique 
measure allows us to examine both the determinants and the conse-

quences of AI investments by firms across a wide range of sectors. We 
find a positive feedback loop between AI investments and firm size: 
AI investments concentrate among the largest firms, and as firms in-

vest in AI, they grow larger, gaining sales, employment, and market 
share. This AI-fueled growth does not appear to stem from cost-cutting; 
instead, AI-investing firms expand through product innovation and in-

creased product offerings.

Our findings highlight important differences between the adoption 
of AI technologies and the adoption of information technology (IT) 
in the 1980s and 1990s.43 Much of the previous literature finds that 
IT investments were associated with economically large productivity 
increases but mixed results on firm growth measures such as mar-

ket share. By contrast, we observe increased growth for AI-investing 
firms, along with increased product innovation, but no evidence (yet) of 
higher firm-level productivity. Our results also show higher AI adoption 
and larger gains from AI investments for larger firms, which contrasts 
with prior work on diffusion patterns for IT (Hobijn and Jovanovic, 
2001). These differences underscore the distinctive features of AI rel-

ative to previous waves of IT: as a prediction technology, our results 
show that AI facilitates product innovation and creates new business 
opportunities by enabling firms to learn better and faster from big data. 
The use and applications of AI technology have quickly expanded in the 
2010s and beyond. Our results speak to the early wave of AI adoption, 
and efficiency gains, if present, may be more backloaded. We expect the 
evolving effects of AI to be an exciting area for future research.

Our findings imply that the benefits from AI depend to a large extent 
on who owns big data—the key input to AI technologies (Fedyk, 2016). 
While data are non-rival (data can be used by any number of firms si-
multaneously), recent theoretical work suggests that, fearing creative 
destruction, firms may choose to hoard data they own, leading to inef-

ficient use of nonrival data; and that giving the data property rights to 
consumers can generate allocations that are close to optimal (Jones and 
Tonetti, 2020). Recent empirical evidence suggests that shifting data 
ownership rights away from firms to consumers in financial services can 
incentivize firm entry and potentially break big firm data advantages 

43 See Dedrick et al. (2003) and Cardona et al. (2013) for reviews of that 
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(Babina et al., 2023b). While our empirical work does not directly speak 
to the optimality of data ownership, our results suggest that—in the cur-

rent status quo where firms own consumer data—AI contributes to the 
increase in industry concentration and the rise of “superstar” firms doc-

umented in recent work (Gutiérrez and Philippon, 2017; Autor et al., 
2020). Further understanding how AI affects production processes, cor-

porate strategies, and the organizational structure of firms and assessing 
the distributional impacts of AI technologies across firms and workers 
are fruitful avenues for future research.
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Appendix A. Appendix on instrument construction

We instrument firm-level AI investments using variation in firms’ 
ex-ante exposure to the supply of AI-trained graduates from universi-

ties that are historically strong in AI. The core idea is that the scarcity 
of AI-trained labor is one of the most important barriers to firms’ AI 
adoption (e.g., CorrelationOne (2019)). Universities are a key source 
of skilled labor, and universities historically strong in AI research are 
able to train more AI-skilled graduates following the widespread rise 

of commercial interest in AI in the 2010s. This enables firms with more 

https://data.mendeley.com/datasets/s26kxvspn7/2
https://data.mendeley.com/datasets/s26kxvspn7/2
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ex-ante connections to AI-strong universities (e.g., via alumni networks) 
to more readily attract AI talent from those universities in the 2010s. 
It is important to note that while AI research flourished in universi-

ties long before 2010 (research in AI and machine learning goes back 
to the 1950s), commercial interest in AI applications started around 
2012, driven by rapid accumulation of data, decreasing costs of com-

putation, and methodological advances in applying techniques such as 
deep learning.44 Moreover, universities did not set up specialized data 
science programs until the mid-2010s. For example, Columbia’s Data 
Science Institute (described as a “trailblazer in the field”; see here) was 
established in 2012. Therefore, in 2010, firms’ connections to AI-strong 
universities were not driven by the need to hire AI-skilled workers, but 
rather by other pre-existing connections such as alumni networks (e.g., 
the CEO having graduated from a particular university), especially for 
the sample of non-tech firms that are the focus of this paper.

To construct the instrument, we need two different datasets. The 
first is a measure of the strength of AI research in each university in 
the pre-period. The second, even more difficult to construct, is a mea-

sure of firm-university hiring networks in the pre-period. To the best 
of our knowledge, there is no comprehensive historical data on either 
of these two aspects. To construct the first measure, we group all uni-

versities into those that are ex-ante strong in AI research and those 
that are not, based on the number of researchers producing AI-related 
publications in each university before 2010. A key concern with this 
measure for our instrument is that AI-strong universities are likely to 
also be strong in the broader field of computer science (CS), producing 
more CS-skilled graduates, which might affect firm outcomes through 
channels other than AI investments. To address this concern, we also 
collect information on the number of CS researchers in each university 
in each year to be included as a control. To construct the second mea-

sure (firm-university hiring networks), we leverage our resume data to 
observe the alma maters of the firm’s employees as of 2010. To validate 
the data, we also measure: (i) the number of fresh graduates in each 
year from each university hired by each firm to confirm that ex-ante 
firm-university networks predict ex-post hiring, and (ii) the number of 
AI-trained graduates from each university to validate our premise that 
ex-ante AI-strong universities produce more AI-trained graduates fol-

lowing the increase in commercial interest in AI.

Data Construction. First, to identify universities that are ex-ante 
strong in AI, we use data from the Open Academic Graph (OAGv2) to 
measure AI-related publications associated with each university. OAGv2 
provides a unified view of two large-scale databases of academic pa-

per metadata, abstracts, citations, and author links: (i) the Microsoft 
Academic Graph (part of the Microsoft Academic Service infrastruc-

ture in Sinha et al., 2015), and (ii) ArnetMiner (Tang et al., 2008). 
Together, these two datasets provide the most comprehensive openly 
available repository of scholarly work starting from the 1870s, allow-

ing us to track research articles and faculty across the near-universe of 
academic and commercial institutions. The Open Academic Graph con-

tains hundreds of millions of papers from 366M distinct author names 
and lists author affiliations where available. We use a keyword-based 
matching procedure to link 689 research institutions (or 99%) in the 
Higher Education Research and Development Survey (HERDS) data to 
faculty information in the OAGv2. HERDS data are collected by the Na-

tional Science Foundation and cover all universities in the U.S. that 
have at least $150,000 in R&D expenditures in each fiscal year. Our 
strict matching procedure requires that the full formal university name, 
or an official shortened variant thereof, be found in full form within 
the institutional affiliations in the OAGv2 paper metadata files, with 
only common “stop-words” (such as “and,” “the,” and “in”) removed 
from both sides of the match. A manual review of the resulting linked 
data shows over 96% precision in matching author affiliations from the 
Open Academic Graph to HERDS data, with the remaining incorrect en-
20

44 A brief history of AI research can be found here.
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tries manually adjusted to ensure full correctness. For each university 
matched to HERDS, we consider all publications in the Open Academic 
Graph in each year that have at least one co-author affiliated with that 
university.

We work with the field experts at the AI for Good Foundation to 
identify AI-related publications.45 First, we identify a small set of “seed” 
journals and conference proceedings that explicitly include terms like 
“artificial intelligence” and “machine learning” in their title (e.g., Jour-

nal of Machine Learning Research and Proceedings of the International Joint 
Conference on Artificial Intelligence). Second, to identify potential addi-

tional AI-related journals and conference proceedings, we look at all 
other journals and proceedings that have published work by the au-

thors of the papers in the seed journals and proceedings. We manually 
filter this broader set of journals and conference proceedings to the ones 
that focus predominantly on AI, leading to a final list of 355 journals 
and conference proceedings globally.

To make sure that our results are not driven by firms’ exposure to 
broader (non-AI) CS-skilled workers, we control for firms’ ex-ante ex-

posure to CS-strong universities based on firms’ hiring networks. In 
particular, we construct an analogous measure of computer science pub-

lications by starting with a set of seed journals and conference proceed-

ings across different fields of computer science (those with the terms 
“compilers,” “databases,” “cryptography,” “computation,” “software,” 
“programming,” “informatics,” “robotics,” or “information security” in 
their titles) and then manually screening all other journals and confer-

ence proceedings that publish papers by the same authors. We exclude 
any journal or conference proceeding that we classify as AI-related, 
leaving a total of 796 non-AI computer science journals and conference 
proceedings.

After identifying the set of AI-related and CS-related journals and 
conference proceedings, we classify the focus area of each researcher 
𝑟 as either AI, computer science, or neither. If at least one third of 
all publications co-authored by 𝑟 are in either AI or CS journals and 
conference proceedings, then 𝑟 is considered a candidate researcher. 
If 𝑟 is a candidate researcher and at least half of 𝑟’s AI/CS publica-

tions are in specifically AI journals and proceedings, then 𝑟 is marked 
as an AI researcher. If more than half of 𝑟’s AI/CS publications are in 
non-AI computer science journals and proceedings, then 𝑟 is considered 
a non-AI CS researcher. Finally, if more than two thirds of 𝑟’s over-

all publications are outside of the set of identified AI and CS journals 
and proceedings, then 𝑟 is classified as a researcher in other (unrelated) 
fields.

At the university level, we compute the percentage of researchers 
in each year who are classified as AI researchers and the percentage of 
researchers who are classified as CS researchers. Researchers in other 
unrelated fields are included in the denominators of both measures. To 
reduce noise, we assume that each researcher is employed at the respec-

tive university in a non-publishing year if that researcher is employed 
at that university in both the following and the preceding year. For ex-

ample, if researcher 𝑟 is identified as affiliated with university 𝑢 in both 
2005 and 2007 but has no publications in 2006, then 𝑟 is still consid-

ered to be affiliated with university 𝑢 in year 2006. We then classify 
whether each university is AI-strong. We define a university as being 
strong in AI if it satisfies one of the following two criteria in at least 
one year between 2005 and 2009: (i) the number of AI researchers is in 
the top 5% of the distribution across all universities in a given year; or 
(ii) the number of AI researchers is in the top 10% of the distribution, 
and the share of AI researchers (the number of AI researchers divided 
by the number of other researchers in the OAGv2 data) is in the top 
5% of the distribution across all universities in a given year. We use the 
second criterion because there are some smaller, tech-oriented colleges 
that could potentially have a large share of researchers in AI but do 
45 Learn more about the AI for Good Foundation here.

https://datascience.columbia.edu/about-us/
https://spectrum.ieee.org/history-of-ai
https://ai4good.org/
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Fig. A.1. Correlation Between the Number of University Researchers and Uni-

versity R&D Expenditures. This figure is a binned scatterplot of the log number 
of researchers in each university against the log R&D expenditure in each uni-

versity in 2010. Each dot represents roughly the same number of universities, 
and the solid line is the fitted regression line. The number of researchers in each 
university is the number of authors from that university with at least one publi-

cation in the OAGv2 data. The R&D expenditure of each university is from the 
NSF’s HERDS data.

not necessarily have large departments. Our results are robust to using 
other cutoffs and earlier years.

We verify that the OAGv2 publication data provide a reliable mea-

sure of university research. In Fig. A.1, we plot the log number of (all) 
researchers in each university in the OAGv2 data against the log R&D 
expenditure in the HERDS data. We find a strong positive correlation 
of 0.83. Furthermore, the top universities we identify as AI-strong in-

clude top AI departments, such as Carnegie Mellon University, UCLA, 
Stanford University, UIUC, New York University, and University of 
Maryland College Park, but are not strongly correlated with the over-

all highest-ranked universities based on the U.S. News & World Report. 
For example, only 50% (39%) of the top 20 (top 50) universities are AI-

strong universities, and among AI-strong universities, only 25% (56%) 
are ranked in the top 20 (top 50) universities in the U.S. News & World 
Report.

To construct the second ingredient for our instrument—firm ex-

posure to AI-strong universities via the ex-ante firm-university hiring 
networks—we use our Cognism resume data. In these data, we ob-

serve the granting institutions of all degrees that workers list on their 
resumes. We disambiguate university names and match them to the 
HERDS data. We define an individual 𝑖 as a graduate of university 𝑢 if 
𝑖’s resume lists at least one degree (undergraduate or graduate) from 
university 𝑢. We define an individual 𝑖 as a fresh graduate from univer-

sity 𝑢 in year 𝑡 if 𝑖 joined a firm in year 𝑡 and graduated from university 
𝑢 in year 𝑡 or year 𝑡 −1. These data offer comprehensive coverage of uni-

versities; for example, in 2010, 668 of the 716 universities in the HERDS 
dataset have at least one fresh graduate in our resume data. Since the 
firms’ hiring patterns might be different for STEM versus non-STEM 
workers (e.g., if a firm has a hiring relationship with an economics 
department for economic policy talent and with a business school for 
management talent), we also consider the firm-university hiring net-

works based specifically on STEM workers, in case such networks are 
more relevant for hiring AI workers. We define STEM workers as em-

ployees who have at least one degree with a major in either engineering 
(e.g., electrical, chemical, mechanical), physical sciences (e.g., math, 
physics, chemistry, computer science, statistics), or biological sciences 
(e.g., biology, pharmacology). We drop firms if the share of STEM work-

ers with missing university information is above the 95th percentile.

We compare the coverage of our university graduates data with of-
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ficial statistics from universities and show that our resume data cover 
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Fig. A.2. Time Series of the Share of AI-trained Fresh Graduates from Ex-ante 
AI-strong Universities and Other Universities. This figure plots the average share 
of AI-trained fresh graduates out of all fresh graduates from 2006 to 2018, 
separately for ex-ante AI-strong universities and non-AI-strong universities. We 
define a university as an AI-strong university if it satisfies one of the following 
two criteria in at least one year between 2005 and 2009: (i) the number of AI 
researchers is in the top 5% of the distribution across all universities in a given 
year; (ii) the number of AI researchers is in the top 10% of the distribution, 
and the share of AI researchers is in the top 5% of the distribution across all 
universities in a given year. We define an individual 𝑖 as a fresh graduate from 
university 𝑢 in year 𝑡 if individual 𝑖 joined a firm in year 𝑡 and graduated from 
university 𝑢 in year 𝑡 or year 𝑡 − 1. An individual is considered an AI-trained 
fresh graduate in year 𝑡 if the individual is a fresh graduate in year 𝑡 and that 
individual’s first job after graduation is an AI-skilled job. AI-skilled jobs are 
defined based on the methodology described in Section 4.2 and used throughout 
the paper.

a sizable proportion of university graduates in the U.S. In particular, 
we aggregate the data to university-year level by calculating the total 
number of fresh graduates from each university in each year. We com-

pare these numbers with the total numbers of all degrees (bachelors, 
masters, and PhDs) conferred by each university in each year, using the 
Integrated Postsecondary Education Data System (IPEDS) data, which 
contain the total enrollment and the number of degrees conferred each 
year for all post-secondary institutions in the U.S. As of 2012 (the latest 
year of the IPEDS data), our resume data cover, on average, 59% of all 
fresh graduates at each university. The number of fresh graduates in the 
resume data is also highly correlated with graduates in the cross-section 
of universities (correlation=0.73).

Finally, we use our Cognism resume data to measure the share of 
all fresh university graduates from each university who get AI-skilled 
jobs in each year between 2006 and 2018. These data allow us to vali-

date our premise that ex-ante AI-strong universities are able to increase 
the supply of AI-skilled graduates following the increase in commercial 
applications in AI in the first half of the 2010s, discussed below.

Instrument Validation. We validate several core assumptions under-

lying the intuition behind our instrument. To begin with, we show that 
the increase in AI-trained graduates during the 2010s was much more 
pronounced in AI-strong universities than in non-AI-strong universities. 
Fig. A.2 plots the share of fresh graduates that are AI-trained from AI-

strong and non-AI-strong universities from 2006 to 2018. In 2006, there 
were few AI graduates across the board, with the share of AI graduates 
below 0.3% for both AI-strong and non-AI-strong universities. Even in 
2012, the share of AI graduates remained below 0.5% in both groups 
of universities. From 2012 to 2018, however, the share of AI graduates 
tripled (to about 1.5%) in AI-strong universities, while the share of AI 
graduates remained under 0.5% in non-AI-strong universities.

We then examine whether firm-university hiring networks provide 

the necessary variation for our instrumental variable strategy. First, our 
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Table A.1

Persistence of Firm-University Hiring Networks. This table reports the coefficients from regressing the share of each firm’s 
fresh graduates hired from each university after 2010 on the pre-2010 firm-university network. Each observation is a firm-

university pair. The dependent variable, constructed using the Cognism resume data, is the share of all fresh graduates hired 
from each university after 2010 in columns 1 and 2 and the share of AI-trained fresh graduates hired from each university 
after 2010 in columns 3–6. In columns 1 and 3, the independent variable is the share of all fresh graduates hired from each 
university between 2005 and 2010. We define an individual 𝑖 as a fresh graduate from university 𝑢 in year 𝑡 if individual 𝑖
joined a firm in year 𝑡 and graduated from university 𝑢 in year 𝑡 or year 𝑡 − 1. In columns 2 and 4, the independent variable 
is the share of all workers in the firm in 2010 who graduated from each university. In column 5, the independent variable is 
the share of all STEM fresh graduates hired from each university before 2010. We define STEM workers as employees who 
have at least one degree with a major in either engineering (e.g., electrical, chemical, mechanical), physical sciences (e.g., 
math, physics, chemistry, computer science, statistics), or biological sciences (e.g., biology, pharmacology). In column 6, the 
independent variable is the share of STEM workers in the firm in 2010 who graduated from each university. All columns 
control for firm fixed effects and university fixed effects. Standard errors are clustered at the university level and reported in 
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Share of Post-2010 Hires Share of Post-2010 AI Hires

(1) (2) (3) (4) (5) (6)

Share of Pre-2010 Hires 0.465*** 0.550***

(0.017) (0.054)

Share of 2010 Workers 0.147*** 0.236***

(0.006) (0.028)

Share of Pre-2010 STEM Hires 0.342***

(0.040)

Share of 2010 STEM Workers 0.197***

(0.021)

Firm FE Y Y Y Y Y Y

University FE Y Y Y Y Y Y

Observations 327,313 327,313 177,097 177,097 177,097 177,097

Table A.2

Changes in Hiring from Ex-ante AI-strong Universities during the Pre-period (2005–2010). This table reports the coefficients 
from regressing the change in the share of fresh graduates from AI-strong universities from 2005 to 2010 on the instrument, 
which measures ex-ante firm-level exposure to the supply of AI-trained university graduates from AI-strong universities (see 
the definition of the instrument in Section 5.3 and the details of instrument construction in Appendix A). The independent 
variable is standardized to mean zero and standard deviation of one. Columns 2–5 control for ex-ante exposure to universities 
that are strong in CS research and top 10 universities. Columns 3–5 also control for the 2-digit NAICS industry sector fixed 
effects. Columns 4 and 5 add the baseline controls all measured as of 2010: firm-level characteristics (log sales, cash/assets, 
firm age, and log number of resumes), log industry wage, and characteristics of the commuting zones where the firms are 
located (the share of workers in IT-related occupations, the share of college-educated workers, log average wage, the share 
of foreign-born workers, the share of routine workers, the share of workers in finance and manufacturing industries, and the 
share of female workers). Column 5 additionally controls for state fixed effects. Regressions are weighted by the number of 
Cognism resumes in 2010. Standard errors are clustered at the 5-digit NAICS industry level and reported in parentheses. *, 
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Δ Share of Fresh Graduates Hired from AI-strong Universities 2005–2010

(1) (2) (3) (4) (5)

Instrument 0.023 0.026 0.033 -0.005 0.060

(0.088) (0.096) (0.091) (0.110) (0.120)

University Control N Y Y Y Y

Industry FE N N Y Y Y

Baseline Control N N N Y Y

State FE N N N N Y

Observations 830 830 829 829 825
instrument leverages the variation in exposure to AI-strong universi-

ties across firms. Therefore, it requires that firms do not hire uniformly 
from the same universities. Empirically, most firms in our data con-

centrate their hiring in a small number of universities. On average, a 
firm hires 18% of its fresh graduates from the single main university 
in its network, 44% from its five main universities, and 59% from its 
10 main universities. By contrast, the largest university produces only 
1.6% of all fresh graduates, the largest five universities produce 7.1% 
of all fresh graduates, and the largest 10 universities produce 12.9% of 
all fresh graduates. Firms also hire disproportionately from universities 
located in the same state as their headquarters: on average, firms hire 
38% of all fresh graduates, 37% of STEM fresh graduates, and 42% of AI 
22

fresh graduates from universities located in the same state. Second, in 
order for the ex-ante firm-university network to predict ex-post hiring 
of AI-skilled labor, firm-university networks need to be persistent over 
time. In column 1 of Table A.1, we regress the share of fresh graduates 
hired from each university after 2010 on the share of fresh graduates 
hired from each university before 2010. We find a strong positive re-

lationship, suggesting that firm-university networks are correlated over 
time. In column 2, we use the share of all workers employed in a firm in 
2010 who graduated from each university to predict the share of fresh 
graduates hired from that university after 2010, again finding a strong 
positive correlation. The persistence of firm-university hiring networks 
also manifests in AI hiring. Columns 3 and 4 show that the universities 
from which a firm hired before 2010 also strongly predict the universi-
ties from which the firm hires its AI-skilled workers after 2010. Finally, 
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Table A.3

First Stage of the Instrument. This table reports the first stage of the instrument, where we regress our key independent 
variable—firm-level changes in the share of AI-skilled workers from 2010 to 2018—on the instrument, which measures ex-

ante firm-level exposure to the supply of AI-trained university graduates from AI-strong universities (see the definition of the 
instrument in Section 5.3 and the details of instrument construction in Appendix A). The dependent variable is the resume-

based measure of the growth in the share of AI workers from 2010 to 2018. The dependent variables and the instrument 
are standardized to mean zero and standard deviation of one. Regressions are weighted by the number of Cognism resumes 
in 2010. All specifications control for the 2-digit NAICS industry sector fixed effects and ex-ante firm-level exposure to 
universities that are historically strong in CS research as well as top 10 universities. Columns 2–4 also include the baseline 
controls measured as of 2010: firm-level characteristics (log sales, cash/assets, firm age, and log number of resumes), log 
industry wage, and characteristics of the commuting zones where the firms are located (the share of workers in IT-related 
occupations, the share of college-educated workers, log average wage, the share of foreign-born workers, the share of routine 
workers, the share of workers in finance and manufacturing industries, and the share of female workers). Columns 3 and 
4 add controls for firm-level pre-trends: changes in log sales and log employment from 2000 to 2008. Column 4 adds state 
fixed effects. Standard errors are clustered at the 5-digit NAICS industry level and reported in parentheses. The first-stage 
F-statistics of the instrument are for all specifications. *, **, and *** denote statistical significance at the 10%, 5%, and 1% 
levels, respectively.

Δ Share of AI Workers

(1) (2) (3) (4)

Instrument 0.609*** 0.422*** 0.455*** 0.464***

(0.171) (0.096) (0.115) (0.107)

Industry FE Y Y Y Y

University Control Y Y Y Y

Baseline Controls N Y Y Y

Control Pre-trend N N Y Y

State FE N N N Y

F Statistic 12.7 19.3 15.7 18.7

Observations 1,001 1,001 777 773
in columns 5 and 6, we show that pre-2010 firm-university hiring net-

works based only on STEM workers also strongly predict the universities 
from which firms hire their AI workers after 2010.

Our instrument is defined as follows for each firm 𝑖:

𝐼𝑉𝑖 =
∑

𝑢

𝑠2010
𝑖𝑢

𝐴𝐼𝑠𝑡𝑟𝑜𝑛𝑔𝑢,

where 𝑠2010
𝑖𝑢

is the share of STEM workers in firm 𝑖 in 2010 who grad-

uated from university 𝑢, and 𝐴𝐼𝑠𝑡𝑟𝑜𝑛𝑔𝑢 equals one if university 𝑢 is 
identified as an AI-strong university based on pre-2010 publications as 
described above. We use firm-university hiring networks based on STEM 
workers in the firm as of 2010, because the instrument based on this 
measure has a stronger first stage; however, the results are very simi-

lar when we construct firm-university hiring networks using all workers 
in the firm as of 2010. To reduce noise, for each firm’s hiring network, 
we consider the 50 universities from which the firm has the most work-

ers in 2010. To control for the effects of general computer science (and 
not specifically AI), we construct an analogous measure of firms’ ex-

posure to CS-strong universities: ∑𝑢 𝑠
2010
𝑖𝑢

𝐶𝑆𝑠𝑡𝑟𝑜𝑛𝑔𝑢, where the weights 
𝑠2010
𝑖𝑢

are firms’ 2010 STEM hiring shares, and 𝐶𝑆𝑠𝑡𝑟𝑜𝑛𝑔𝑢 is the average 
share of (non-AI) CS researchers (the number of CS researchers divided 
by the number of all other researchers) at university 𝑢 between 2005 
and 2009. To control for the effects of overall university ranking, we 
also construct a measure of firms’ exposure to top-ranked universities: ∑
𝑢 𝑠

2010
𝑖𝑢

𝑇 𝑜𝑝10𝑢, where 𝑇 𝑜𝑝10𝑢 equals one if university 𝑢 is one of the 
top 10 universities ranked by U.S. News & World Report in 2010.46

Before proceeding, we examine an important identification concern 
regarding our instrument: if firms anticipated the surge in demand for 
AI, they might have started building their connections to AI-strong uni-

versities before 2010, making firm-university hiring networks in 2010 
endogenous to firms’ ability to hire AI-trained students ex-post. This is 
unlikely, given the lack of both commercial interest in AI by firms and 
training of AI-skilled graduates by universities (Fig. A.2) prior to 2010. 
Indeed, we are able to confirm empirically that firms connected to AI-

46 The top 10 universities include: Harvard, Princeton, Yale, University of 
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Pennsylvania, Columbia, MIT, Stanford, Caltech, University of Chicago, Duke.
strong universities did not increase their share of hired fresh graduates 
from those universities from 2005 to 2010. Specifically, in Table A.2, 
we find no significant relationship between the change in the share of 
fresh graduates from AI-strong universities in the pre-period (from 2005 
to 2010) and our instrument.

In Appendix Table A.4, we further show that firms that are more 
exposed to AI-strong universities are not growing faster before 2010, 
which supports the exclusion restriction that the exposure to AI-strong 
universities only affects firm growth through firms’ AI investments after 
2010.

First Stage. Table A.3 presents the first stage of the instrument, 
where we regress our key independent variable—firm-level changes in 
the share of AI-skilled workers from 2010 to 2018—on the instrument, 
which measures ex-ante firm-level exposure to the supply of AI-trained 
university graduates from AI-strong universities. We control for firm-

specific ex-ante exposure to CS-strong universities and top-10 univer-

sities and industry fixed effects in all specifications. In column 2, we 
additionally control for our baseline controls measured as of 2010: (i) 
firm-level variables (log employment, cash/assets, log sales, R&D/Sales, 
and log markups), (ii) the characteristics of the commuting zones where 
the firms are located in 2010 (the share of workers in IT-related occu-

pations, the share of college-educated workers, log average wage, the 
share of foreign-born workers, the share of routine workers, the share 
of workers in finance and manufacturing industries, and the share of 
female workers); and (c) the log industry-average wage. The inclusion 
of these controls helps to address the concern that firms’ ex-ante ex-

posure to AI-strong universities might be correlated with other firm 
characteristics that can drive AI adoption and firm growth. In column 3, 
we also control for firms’ pre-period sales and employment growth be-

tween 2000 and 2008 to address unobservable firm characteristics that 
might simultaneously drive firms’ growth trajectories and their hiring 
of AI workers. In column 4, we further add state fixed effects to control 
for local labor market characteristics that might drive both universi-

ties’ ability to produce AI graduates and firm growth. The first stage 
F-statistics are well above the conventional level of 10 for all specifica-

tions.

Robustness. We conduct several robustness tests of the IV results. 

First, we use an alternative measure of universities’ research strength 
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Table A.4

Firm Connections to AI-strong Universities and Firm Growth in the Pre-period. This table reports the coefficients from re-

gressions of firm growth from 2000 to 2008 on the instrument, which measures ex-ante firm-level exposure to the supply of 
AI-trained university graduates from AI-strong universities (see the definition of the instrument in Section 5.3 and the details 
of instrument construction in Appendix A). Regressions are weighted by the number of Cognism resumes in 2010. The instru-

ment is standardized to mean zero and standard deviation of one. We consider changes in log sales in columns 1 and 2, log 
employment in columns 3 and 4, and log market value in columns 5 and 6. All specifications control for the 2-digit NAICS in-

dustry sector fixed effects and ex-ante exposure to universities that are strong in computer science research as well as top 10 
universities. All columns also control for the baseline controls all measured as of 2010: firm-level characteristics (log sales, 
cash/assets, firm age, and log number of resumes), log industry wage, and characteristics of the commuting zones where the 
firms are located (the share of workers in IT-related occupations, the share of college-educated workers, log average wage, 
the share of foreign-born workers, the share of routine workers, the share of workers in finance and manufacturing indus-

tries, and the share of female workers). Columns 2, 4, and 6 additionally control for state fixed effects. Standard errors are 
clustered at the 5-digit NAICS industry level and reported in parentheses. *, **, and *** denote statistical significance at the 
10%, 5%, and 1% levels, respectively.

Δ Log Sales, 2000–2008 Δ Log Employment, 2000–2008 Δ Log Market Value, 2000–2008

(1) (2) (3) (4) (5) (6)

Instrument -0.027 -0.032 -0.005 0.006 -0.041 -0.037

(0.034) (0.040) (0.044) (0.047) (0.033) (0.040)

Industry FE Y Y Y Y Y Y

University Control Y Y Y Y Y Y

Baseline Controls Y Y Y Y Y Y

State FE N Y N Y N Y

Observations 821 817 780 776 760 753

Table A.5

Growth in University AI Research in the Pre-period. This table reports the coefficients from regressing the change in connected universities’ AI research strength from 
2005 to 2010 on the change in the share of AI workers from 2010 to 2018. The dependent variable is the weighted average of the change in the log number of AI 
researchers of connected universities in columns 1 to 4, and the weighted average of the change in the share of AI researchers of connected universities in columns 
5 to 8, where the weights are the share of STEM workers in 2010 graduating from each university. Regressions are weighted by the number of Cognism resumes 
in 2010. All specifications control for the 2-digit NAICS industry sector fixed effects and ex-ante firm-level exposure to universities that are historically strong in 
CS research as well as top 10 universities. All columns also control for the weighted average of the log number of AI researchers and the share of AI researchers 
in 2005. Columns 2–4 and 6–8 also include the baseline controls measured as of 2010: firm-level characteristics (log sales, cash/assets, firm age, and log number 
of resumes), log industry wage, and characteristics of the commuting zones where the firms are located (the share of workers in IT-related occupations, the share 
of college-educated workers, log average wage, the share of foreign-born workers, the share of routine workers, the share of workers in finance and manufacturing 
industries, and the share of female workers). Columns 3–4 and 7–8 add controls for firm-level pre-trends: changes in log sales and log employment from 2000 to 
2008. Columns 4 and 8 add state fixed effects. Standard errors are clustered at the 5-digit NAICS industry level and reported in parentheses. *, **, and *** denote 
statistical significance at the 10%, 5%, and 1% levels, respectively.

Δ Log Number of AI Researchers Δ Share of AI Researchers

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Share AI Workers 0.012 0.004 0.000 0.005 0.004 0.005 0.008 0.008

(0.007) (0.007) (0.008) (0.008) (0.003) (0.004) (0.005) (0.005)

Industry FE Y Y Y Y Y Y Y Y

University Control Y Y Y Y Y Y Y Y

Baseline Controls N Y Y Y N Y Y Y

Control Pre-trend N N Y Y N N Y Y

State FE N N N Y N N N Y

Observations 1,001 1,001 777 773 1,001 1,001 777 773
in CS more generally. The ranking of CS departments is from csrank-

ings.org and is based on publications in prestigious CS conferences. 
The same ranking is also used in Gofman and Jin (2022). To make it 
consistent with our main measure, we exclude conferences in AI areas 
(including AI, computer vision, machine learning, and natural language 
processing) and limit the time period to 2005–2009. The results are ro-

bust to this control and are reported in Online Appendix Table A20.

Second, one potential concern is reverse causality: universities might 
have become stronger in AI research because of their connections to 
firms who could provide the data and resources necessary to support 
breakthroughs on the research side. Since AI research started well be-

fore the wider commercial application of AI among non-tech firms in 
the 2010s, the reverse causality is less likely. Moreover, we provide two 
tests to address this concern. We first regress the change in universities’ 
AI research strength (measured by the log number of AI researchers 
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or the share of AI researchers) from 2005 to 2010 on connected firms’ 
change in AI investments between 2010 and 2018. Appendix Table A.5

shows that universities connected to firms that later invest more in AI 
did not increase their AI strength in the pre-period. We also measure 
universities’ AI research strength using an earlier period from 2000 to 
2004 instead of 2005–2009 and find similar results (Online Appendix 
Table A21).

Third, we show that our results are not driven by a single prominent 
university that is strong in AI and other areas. In Online Appendix Table 
A22, we drop, in turn, each of the three universities with the largest 
number of AI faculty—Stanford University, Carnegie Mellon University, 
and the University of Illinois Urbana-Champaign—from the calculation 
of the IV, and the results remain unchanged.

Finally, the hiring links could be endogenous and correlated with 
other omitted variables (e.g., if the hiring links are driven by AI-related 
or programming-related jobs). Using ex-ante firm-university networks 

mitigates this concern. Furthermore, in Online Appendix Table A23, we 

https://csrankings.org/
https://csrankings.org/
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drop all STEM workers and only use non-STEM workers to construct 
firm-university networks. The first stage of the IV becomes slightly 
weaker, but the IV estimates remain similar to the baseline results.

Appendix B. Supplementary material

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .jfineco .2023 .103745.
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